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SUMMARY

Natural language communication has long been considered a defining characteristic of
human intelligence. I am motivated by the question of how learning agents can under-
stand and generate contextually relevant natural language in service of achieving a goal.
In pursuit of this objective, I have been studying Interactive Narratives, or text-adventures:
simulations in which an agent interacts with the world purely through natural language—
“seeing” and “acting upon” the world using textual descriptions and commands. These
games are usually structured as puzzles or quests in which a player must complete a se-
quence of actions to succeed. My work studies two closely related aspects of Interactive
Narratives: game-playing and game generation—each presenting its own set of unique
challenges. Structured contextualization, in the form of knowledge graphs, improves
situated natural language generation and understanding in interactive environments
as evaluated by (1) the ability to operate in textual worlds, and (2) the perceived co-
herence and creativity of procedurally generated language-based environments.

Game-playing presents three challenges: (1) Knowledge representation—an agent must
maintain a persistent memory of what it has learned through its experiences with a partially
observable world; (2) Commonsense reasoning to endow the agent with priors on how to
interact with the world around it; and (3) Scaling to effectively explore combinatorially-
sized natural language state-action spaces. On the other hand, game generation can be split
into two complementary considerations: (1) World generation, or the problem of creating a
world that defines the limits of the actions an agent can perform; and (2) Quest generation,
i.e. defining actionable objectives grounded in a given world. I will present my work thus
far—showcasing how structured, interpretable data representations in the form of knowl-
edge graphs aid in each of these tasks—in addition to proposing how exactly these two
aspects of Interactive Narratives can be combined to improve language learning across this

board of challenges.
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CHAPTER 1
WHY INTERACTIVE ENVIRONMENTS?

Natural language communication has long been considered a defining characteristic of hu-
man intelligence. In humans, this communication is grounded in experience and real world
context—"‘what” we say or do depends on the current context around us and “why” we say
or do something draws on commonsense knowledge gained through experience. So how do
we imbue learning agents with the ability to understand and generate contextually relevant
natural language in service of achieving a goal?

Two key components in creating such agents are interactivity and environment ground-
ing, shown to be vital parts of language learning in humans. Humans learn various skills
such as language, vision, motor skills, etc. more effectively through interactive media (Feld-
man and Narayanan 2004; Barsalou 2008). In the realm of machines, interactive environ-
ments have served as cornerstones in the quest to develop more robust algorithms for learn-
ing agents across many machine learning sub-communities. Environments such as the Atari
Learning Environment (Bellemare et al. 2013) and Minecraft Malmo (Johnson et al. 2016)
have enabled the development of game agents that perform complex tasks while operating
on raw video inputs, and more recently THOR (Kolve et al. 2017) and Habitat (Manolis
Savva* et al. 2019) attempt to do the same with embodied agents in simulated 3D worlds.

Despite such progress in modern machine learning and natural language processing,
agents that can communicate with humans (and other agents) through natural language in
pursuit of their goals are still primitive. One possible reason for this is that many datasets
and tasks used for Natural Language Processing (NLP) are static, not supporting interac-
tion and language grounding (Feldman and Narayanan 2004; Barsalou 2008; Brooks 1991;
Mikolov et al. 2016; Gauthier and Mordatch 2016; Lake et al. 2017). In other words,

there has been a void for such interactive environments for purely language-oriented tasks.
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Figure 1.1: An excerpt from Zorkl, a typical text-based adventure game.

Building on recent work in this field, I posit that interactive narratives should be the envi-
ronments of choice for such language-oriented tasks. Interactive Narratives, in general,
is an umbrella term, that refers to any form of digital interactive experience in which users
create or influence a dramatic storyline through their actions (Riedl and Bulitko 2013)—i.e.
the overall story progression in the game is not pre-determined and is directly influenced
by a player’s choices. For the purposes of this work, I consider one particular type of inter-
active narrative: parser-based interactive fiction (or text-adventure) games—though I note
that other forms of interactive narrative, including those with visual components, provide
closely related challenges.

Figure 1.1 showcases Zork (Anderson et al. 1979), one of the earliest and most in-
fluential text-based interactive narrative. These games are simulations in which an agent

29 ¢

interacts with the world through natural language—*“perceiving”, “acting upon”, and “‘talk-
ing to” the world using textual descriptions, commands, and dialogue. The simulations
are partially observable, meaning that the agent never has access to the true underlying

world state and has to reason about how to act in the world based only on potentially the

incomplete textual observations of its immediate surroundings. They provide tractable,



situated environments in which to explore highly complex interactive grounded language
learning without the complications that arise when modeling physical motor control and
vision—situations that voice assistants such as Siri or Alexa might find themselves in when
improvising responses. These games are usually structured as puzzles or quests with long-
term dependencies in which a player must complete a sequence of actions and/or dialogues
to succeed. This in turn requires navigation and interaction with hundreds of locations,
characters, and objects. The interactive narrative community is one of the oldest gaming
communities and game developers in this genre are quite creative. Put these two things to-
gether and we get very large, complex worlds that contain a multitude of puzzles and quests
to solve across many different genres—everything from slice of life simulators where the
player cooks a recipe in their home to Lovecraftian horror mysteries. The complexity and
diversity of topics enable us to build and test agents that go an extra step towards modeling
the difficulty of situated human language communication.

As the excerpt of the text-game in Figure 1.1 shows, humans bring competencies in
natural language understanding, commonsense reasoning, and deduction to bear in order
to infer the context and objectives of a game. Beyond games, real-world applications such
as voice-activated personal assistants can also benefit from advances in these capabilities
at the intersection of natural language understanding, natural language generation, and se-
quential decision making. These real world applications require the ability to reason with
ungrounded natural language (unlike multimodal environments that provide visual ground-
ing for language) and interactive narratives provide an excellent suite of environments to

tackle these challenges.

1.1 Challenges of Operating in Interactive Environments

Interactive narratives exist at the intersection of natural language processing, storytelling,
and sequential decision making. Like many NLP tasks, they require natural language un-

derstanding, but unlike most NLP tasks, Interactive narratives are sequential decision mak-



Figure 1.2: A map of Zorkl by artist ion_bond.

ing problems in which actions change the subsequent world states of the game and choices
made early in a game may have long term effects on the eventual endings. Reinforce-
ment Learning (Sutton and Barto 1998) studies sequential decision making problems and
has shown promise in vision-based (Jaderberg er al. 2016) and control-based (OpenAl et
al. 2018) environments, but has less commonly been applied in the context of language-
based tasks. Text-based games thus pose a different set of challenges than traditional video
games such as StarCraft. Their puzzle-like structure coupled with a partially observable
state space and sparse rewards require a greater understanding of previous context to enable
more effective exploration—an implicit long-term dependency problem not often found in

other domains that agents must overcome.

1.1.1 Knowledge Representation

Interactive narratives span many distinct locations, each with unique descriptions, objects,
and characters. An example of a world of a interactive fiction game can be seen in Fig-

ure 1.2. Players move between locations by issuing navigational commands like go West.


https://www.reddit.com/r/zork/comments/5ximil/zork_map_mit_version_fantastic_game_i_spent_some/

This, in conjunction with the inherent partial observability of interactive narratives,
gives rise to the Textual-SLAM problem, a textual variant of Simultaneous Localization
and Mapping (SLAM) (Thrun et al. 2005) problem of constructing a map while navigating
a new environment. In particular, because connectivity between locations is not necessarily
Euclidean, agents need to detect when a navigational action has succeeded or failed and
whether the location reached was previously seen or new. Beyond location connectivity,
it’s also helpful to keep track of the objects present at each location, with the understanding
that objects can be nested inside of other objects, such as food in a refrigerator or a sword
in a chest.

Due to the large number of locations in many games, humans often create structured
memory aids such as maps to navigate efficiently and avoid getting lost. The creation
of such memory aids has been shown to be critical in helping automated learning agents
operate in these textual worlds (Ammanabrolu and Riedl 2019b; Murugesan et al. 2020;

Adhikari et al. 2020; Ammanabrolu and Hausknecht 2020).

1.1.2  Commonsense Reasoning

Many real-world activities can be thought of as a sequence of sub-goals in a partially ob-
servable environment. These activities—getting ready to go to work, for example—are
considered trivial for humans because of commonsense knowledge. Commonsense knowl-
edge is defined as a set of facts, beliefs, and procedures shared among many people in the
same society or culture. However, to an agent learning purely by interacting with the en-
vironment, even simple tasks can require considerable trial-and-error. I hypothesize that
access to commonsense knowledge can enable an agent to more quickly converge on a
policy that completes common, everyday tasks. I further hypothesize that commonsense
knowledge can allow the agent to infer the presence of elements in the world when obser-
vations are noisy or fail.

Text-games cover a wide variety of genres, as mentioned earlier this ranges from slice



of life simulators where the player makes a recipe in their home to mysteries and fairy
tales. This enables us to explore the question of how to adapt to domain-specific knowledge
which may contradict everyday commonsense. Take for example, an agent that knows that
knows how to cut vegetables with a knife. When placed in an environment without a knife,
it must adapt its cooking knowledge to account for this in order to still construct the recipe
successfully.

In order to effectively convey the core narrative or puzzle, text-adventure games make
ample use of prior commonsense and thematic knowledge. An everyday example could be
something as mundane as the fact that an axe can be used to cut wood, or that swords are
weapons. Different genres also have specific knowledge attached to them that wouldn’t nor-
mally be found in mundane settings, e.g. in a horror or fantasy game, we know that a coffin
is likely to contain a vampire or other undead monster or that kings are royalty and must be
treated respectfully. When a human enters a particular domain, they already possess priors
regarding the specific knowledge relevant to the situations likely to be encountered—this is
thematic commonsense knowledge that a learning agent must acquire to ensure successful
interactions.

This is closely related to the problem of transfer, the problem of acquiring and adapting
these priors in novel environments through interaction. In this sense, we can think of
commonsense knowledge as priors regarding environment dynamics. This problem space
can be explored using text-based games. What commonsense can be transferred between
two different environments, for example, a horror game and a mundane slice of life game?
How do you unlearn, or choose not to apply, a piece of commonsense that no longer fits
with the current world. What if the perceived environment dynamics change in novel ways?
E.g. some vampires actually love garlic instead of being allergic to them or you suddenly
find out that bread can be made without yeast and is known as sourdough—whole new

categories of recipes are now possible.



1.1.3  Acting in Combinatorially-sized State-Action Spaces

Interactive narratives require the agent to operate in the combinatorial action space of nat-
ural language. To realize how difficult a game such as Zorkl is for standard reinforcement
learning agents, we need to first understand how large this space really is. In order to
solve a popular IF game such as Zorkl it’s necessary to generate actions consisting of up to
five-words from a relatively modest vocabulary of 697 words recognized by Zork’s parser.
Even this modestly sized vocabulary leads to O(697°) = 1.64 x 10'* possible actions at
every step—a dauntingly-large combinatorially-sized action space for a learning agent to
explore. In comparison, board games such as chess and Go or Atari video games have

branching factors of the order of O(10?).

1.1.4 Exploration

Most text-adventure games are structured as quests with high branching factors in which
players must solve a sequence of puzzles to advance the story and gain score—i.e. there
are usually multiple ways to finish a quest. To solve these puzzles, players have freedom
to a explore both new areas and previously unlocked areas of the game, collect clues, and
acquire tools needed to solve the next puzzle and unlock the next portion of the game. From
a Reinforcement Learning perspective, these puzzles can be viewed as bottlenecks that act
as partitions between different regions of the state space. Whereas the multiple pathways to
completion through puzzles may intuitively seem to make the problem easier, the opposite
is true. The bottlenecks set up a situation where agents get stuck because they do not see
the right action sequence enough times to be sufficiently reinforced. I contend that existing
Reinforcement Learning agents are unaware of such latent structure and are thus poorly
equipped for solving these types of problems.

Overcoming bottlenecks is not as simple as selecting the correct action from the bot-
tleneck state. Most bottlenecks have long-range dependencies that must first be satisfied:

Zorkl for instance features a bottleneck in which the agent must pass through the unlit Cel-



lar where a monster known as a Grue lurks, ready to eat unsuspecting players who enter
without a light source. To pass this bottleneck the player must have previously acquired
and lit the lantern. Reaching the Cellar without acquiring the lantern results in the player
reaching an unwinnable state—the player is unable to go back and acquire a lantern but
also cannot progress further without a way to combat the darkness. Other bottlenecks don’t
rely on inventory items and instead require the player to have satisfied an external condition
such as visiting the reservoir control to drain water from a submerged room before being
able to visit it. In both cases, the actions that fulfill dependencies of the bottleneck, e.g.
acquiring the lantern or draining the room, are not rewarded by the game. Thus agents must
correctly satisfy all latent dependencies, most of which are unrewarded, then take the right
action from the correct location to overcome such bottlenecks. Consequently, most existing
agents—regardless of whether they use a reduced action space (Zahavy et al. 2018; Yuan
et al. 2018; Yin and May 2019a) or the full space (Ammanabrolu and Hausknecht 2020;
Hausknecht et al. 2020)—have failed to consistently clear these bottlenecks. It is only re-
cently that works have begun explicitly accounting for and surpassing such bottlenecks—
using a reduced action space and Monte-Carlo Planning (Jang et al. 2021) and full action
space and intrinsic motivation-based structured exploration (Ammanabrolu et al. 2020d).
While problems relating to long-term dependencies and sparse rewards are not unique
to text games alone, they are significantly complicated in this domain due to agents having
to simultaneously handle all the other challenges as well. As a result, even existing algo-
rithms designed for the current test beds of choice for these issues such as GoExplore for
the Atari game Montezuma’s Revenge (Ecoffet ef al. 2021) face difficulties in overcoming

bottlenecks in this domain (Ammanabrolu et al. 2020d; Madotto et al. 2020).

1.1.5 Simultaneously Learning to Act and Speak

Some text-games extend the previous challenges even further by requiring agents to en-

gage in dialogue to progress in a task, increasing the space of possibilities exponentially
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Figure 1.3: The LIGHT (Urbanek et al. 2019) environment.

and bringing text environments closer to real-world situations. An example of such an
environment—designed explicitly as a research platform— is the large-scale crowdsourced
fantasy text-adventure game LIGHT (Urbanek et al. 2019), seen in Figure 1.3, where char-
acters can act and talk while interacting with other characters. It consists of of a set of
locations, characters, and objects leading to rich textual worlds in addition to quests demon-
strations of humans playing these quests providing natural language descriptions in varying
levels of abstraction of motivations for a given character in a particular setting.

On top of the other text-game related challenges, the primary core challenge for the
agent here is the recognition that dialogue can also be used to change the environment.
With dialogue, an agent can now learn to instruct or convince other characters in the world
to achieve the goal for it—e.g. convince the pirate through dialogue to give you their
treasure instead of just stealing it yourself. The agent needs to learn to balance both its
ability to speak as well as act in order to effectively achieve its goals (Ammanabrolu et al.

2021).



1.2 Challenges of Generating Interactive Environments

A key consideration in modeling communication through a general purpose interactive
narrative solver is that an agent trained to solve these games is limited by the scenarios
described in them. Although the range of scenarios is vast, this brings about the question
of what the agent is actually capable of understanding even if it has learned to solve all
the puzzles in a particular game. Deep (reinforcement) learning systems tend to learn
to generalize from the head of any particular data distribution, the “common” scenarios,
and memorize the tail, the rarely seen cases. I contend that a potential way of testing an
Al system’s understanding of a domain is to use the knowledge it has gained in a novel
way and to create more instances of that domain. We can view this as storytelling—long
considered to be one of our most natural forms of communication (Boyd 2018).

From the perspective of interactive narratives, this involves automatically creating such
games—the flip side of the problem of creating agents that operate in these environments—
and requires anticipating how people will interact with these environments and conforming
to such expected commonsense norms to make a creative and engaging experience. Au-
tomated generation of text-adventure games can broadly be split into two considerations:
(1) the structure of the world, including the layout of rooms, textual description of rooms,
objects, and non-player characters; and (2) the quest, consisting of the partial ordering of

activities that the player must engage in to make progress toward the end of the game.

1.2.1 Quest Generation

The core experience in an interactive narrative revolves the quest, consisting of the par-
tial ordering of activities that an agent must engage in to make progress toward the end of
the game. Quest generation requires narrative intelligence and commonsense knowledge
as a quest must maintain coherence throughout while progressing towards a goal (Am-

manabrolu et al. 2020a). Each step of the quest follows logically from the preceding steps
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much like the steps of a cooking recipe. A restaurant cannot serve a batch of cookies with-
out first gathering ingredients, preparing cooking instruments, mixing ingredients, etc. in a
particular sequence. Any generated quest that doesn’t follow such an ordering will appear

random or nonsensical to a human, betraying the AI’s lack of commonsense understanding.

1.2.2 World Generation

Maintaining quest coherence also means following the constraints of the given game world.
The quest has to fit within the confines of the world in terms of both genre and given
affordances—e.g. using magic in a fantasy world, placing kitchens next to living rooms
in mundane worlds, etc. This gives rise to the concept of world generation, the sec-
ond half of the automated game generation problem. This refers to generating the struc-
ture of the world, including the layout of rooms, textual description of rooms, objects,
and characters—setting the boundaries for how an agent is allowed to interact with the
world (Ammanabrolu et al. 2020b). Similarly to quests, a world violating thematically rel-
evant commonsense structuring rules will appear random to humans, providing us with a

metric to measure an Al system’s understanding.

1.3 Thesis Statement

This bring us to the thesis statement and how I propose to tackle all of these problems.
Structured contextualization, in the form of knowledge graphs, improves situated nat-
ural language generation and understanding in interactive environments as evaluated
by (1) the ability to operate in textual worlds, and (2) the perceived coherence and
creativity of procedurally generated language-based environments.

A core component of this thesis is generating and understanding language in situated—
or grounded—interactive environments. This requires an understanding of context, the
descriptions of the world must be interpreted and language generated accordingly. Struc-

turing this context in the form of a knowledge graph aid in each of the challenges discussed
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so far. This work is structured into three parts:

Part 1: Operating in Textual Worlds. In this part I focus on creating agents that can
learn to act and speak in interactive narratives, highlighting the effectiveness of knowledge
graphs. First, I show that graphs provide knowledge representations containing a persistent
memory—Iletting us overcome the challenge of partially observable state spaces (Chap-
ter 3). Combinatorially-large natural language action spaces can be constrained based on
information contained withing an agent’s knowledge graph (Chapter 4). Chapter 5 extends
our ability to explore combinatorially-sized spaces by exploiting the latent, underlying de-
pendency graph structure of these POMDPs via knowledge graph-based intrinsic motiva-
tion. These graphs let us seed agents with external commonsense knowledge as well as to
transfer prior commonsense and thematic knowledge that they have learned (Chapter 6).
Chapter 7 builds on these challenges by looking the question of how to balance dual act-
speech spaces by learning to simultaneously perform goal-driven, situated dialogue while
also acting. The challenges measure an agent’s ability to operate in a interactive textual
environment and so are evaluated based on game-playing ability—i.e. how well an agent

can complete a given text-adventure game.

Part 2: Generating Textual Worlds. On the game generation side of things, we factorize
the problem into the problems of world and quest generation. Graph representations let us
structure and develop textual worlds that align with thematic and everyday commonsense
priors (Chapter 8) and let us ground objectives—or quests—into these worlds (Chapter 9).
These challenges in game generation are evaluated by humans in terms of how creative and

coherent they perceive the generated environments to be.

Part 3: Putting it all together. Chapter 10 ties both the game playing and game gener-
ation lines of research together by proposing a method to train agents to act and speak via

natural language using curriculums of procedurally generated textual environments.
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CHAPTER 2
BACKGROUND AND PRIOR WORK

This chapter first provides a background on the formal definition of text games as applied
to interactive, learning setting and the two primary frameworks used through the rest of this
dissertation. I then sketch related work in this area both in the realms of game-playing and

game-generation.

2.1 Frameworks

2.1.1 Background

Formally, text-adventure games can be defined as Partially-Observable Markov Decision
Processes (Hausknecht et al. 2020; Coté et al. 2018). A game can be represented as a
7-tuple of (S, T, A,Q, O, R,~) representing the set of environment states, mostly deter-
ministic conditional transition probabilities between states, the vocabulary or words used
to compose text commands, observations returned by the game, observation conditional
probabilities, reward function, and the discount factor respectively. At every step, an agent
receives an observation from the environment, then chooses an action to perform and re-
ceives an updated observation from the game engine.

I have also aided in the development of the primary open-source platforms and base-
line benchmarks in this field: Jericho a learning environment for human-made interactive
narrative games; and LIGHT a large-scale crowdsourced multi-user text-game for studying
situated dialogue—each resulting in hundreds of stars and forks on GitHub and dozens of

agents. These are used through the rest of this dissertation.
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2.1.2 Jericho

Jericho is an open-source! Python-based interactive narrative environment, which provides
an OpenAl-Gym-like interface (Brockman et al. 2016) for learning agents to connect with
interactive narrative games. Jericho is intended for reinforcement learning agents, but also
supports the ability to load and save game states, enabling planning algorithms Monte-
Carlo Tree Search (Coulom 2007) as well as reinforcement learning approaches that rely
on the ability to restore state such as Backplay (Resnick et al. 2018) and GoExplore (Ecoffet
et al. 2021). Jericho additionally provides the option to seed the game’s random number
generator for replicability.

Jericho supports a set of human-made interactive narrative games that cover a vari-
ety of genres: dungeon crawl, Sci-Fi, mystery, comedy, and horror. Games were selected
from classic Infocom titles such as Zork and Hitchhiker’s Guide to the Galaxy, as well
as newer, community-created titles like Anchorhead and Afflicted. Supported games use
a point-based scoring system, which serves as the agent’s reward. Beyond the set of sup-
ported games, unsupported games may be played through Jericho, without the support of
score detection, move counts, or world-change detection. There exists a large collection of
over a thousand unsupported games?, which may be useful for unsupervised pretraining or
intrinsic motivation.

Template-Based Action Generation I introduce a novel template-based action space
in which the agent first chooses an action template (e.g. put _in _) and then fills in the blanks
using words from the parser’s vocabulary. Notationally, I employ u < wy, w, to denote
the filling of template u with vocabulary words w;, wo. Jericho provides the capability to
extract game-specific vocabulary and action templates. These templates contain up to two

blanks, so a typical game with 200 templates and a 700 word vocabulary yields an action

!Jericho is available at https://github.com/Microsoft/jericho.

ZMost interactive narrative games are deterministic environments. Notable exceptions include Anchor-
head and Zork]1.

3https://github.com/BY U-PCCL/z-machine-games
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space of O(TV?) ~ 98 million, three orders of magnitude smaller than the 240-billion
space of 4-word actions using vocabularly alone.

World Object Tree The world object tree* is a semi-interpretable latent representation
of game state used to codify the relationship between the objects and locations that popu-
late the game world. Each object in the tree has a parent, child, and sibling. Relationships
between objects are used to encode posession: a location object contains children corre-
sponding to the items present at that location. Similarly, the player object has the player’s
current location as a parent and inventory items as children. Possible applications of the
object tree include ground-truth identification of player location, ground-truth detection of
the objects present at the player’s location, and world-change-detection.

Identifying Valid Actions Valid actions are actions recognized by the game’s parser
that cause changes in the game state. When playing new games, identifying valid actions
is one of the primary difficulties encountered by humans and agents alike. Jericho has the
facility to detect valid actions by executing a candidate action and looking for resulting
changes to the world-object-tree. However, since some changes in game state are reflected
only in global variables, it’s rare but possible to experience false negatives. In order to
identify all the valid actions in a given state, Jericho uses the following procedure:

Handicaps In summary, to ease the difficulty of interactive narrative games, Jericho
optionally provides the following handicaps: 1) Fixed random seed to enforce determinism.
2) Use of Load, Save functionality. 3) Use of game-specific templates I/ and vocabulary
V. 4) Use of world object tree as an auxillary state representation or method for detecting
player location and objects. 5) Use of world-change-detection to identify valid actions. For
reproducibilty, I report the handicaps used by all algorithms in this chapter and encourage

future work to do the same.

“More on game trees https://inform-fiction.org/zmachine/standards/z1point1/index.html.
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Algorithm 1 Procedure for Identifying Valid Actions

1: £ < Jericho environment
T < Set of action templates
o < Textual observation
P < {p1...p,} Interactive objects identified with noun-phrase extraction or world
object tree.
Y «+ & List of valid actions
s < E.save() — Save current game state
for template v € 7 do
for all combinations p{, p> € P do
Action a < u < p1,ps
10: if £.world_changed(€.step(a)) then
11: Y+~ YUa

12: E.load(s) — Restore saved game state
return Y

Rl N

R N

2.1.3 LIGHT

This section first provides a brief overview of the LIGHT game environment, followed by
descriptions of the LIGHT-Quests and ATOMIC-LIGHT datasets used in this chapter.

The LIGHT game environment is a multi-user fantasy text-adventure game consisting
of a rich, diverse set of characters, locations, and objects (1775 characters, 663 locations,
and 3462 objects). Characters are able to perform templated actions to interact with both
objects and characters, and can speak to other characters through free form text. Actions
in text games generally consist of verb phrases (VP) followed optionally by prepositional
phrases (VP PP). For example, get OBJ, put OBJ, give OBJ to CHAR, etc.. There are 13
types of allowed verbs in LIGHT. These actions change the state of the world which is
expressed to the player in the form of text descriptions.

Figures 2.1, 2.2, and 2.3 summarize the data that I collected for LIGHT-Quests. Data is
collected via crowdsourcing in two phases, first the quests then demonstration of humans
playing them. During the first phase, crowdworkers were given a setting, i.e. situated in a
world, in addition to a character and its corresponding persona and asked to describe in free
form text what potential motivations or goals could be for that character in the given world.

The kind of information given to the crowdworkers is seen in Figure 2.1. Simultaneously,
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Setting You are in the Dangerous Precipice. The dangerous precipice overlooks the valley below. The ground slopes down to
the edge here. Dirt crumbles down to the edge of the cliff. There’s a dragon crescent, a knight’s armor, a golden dragon
egg, and a knight’s fighting gear here. A knight is here.You are carrying nothing.
Partner: | Knight.

Persona | I am a knight. I come from a lower-ranking noble family. I serve under the king, as my father did before me. In times
of war, I fight on horseback.
Carrying | knight’s armor, golden dragon egg, knight’s fighting gear
Self: A dragon.

Persona | Iam a dragon living in the mountains. I enjoy hoarding treasure. I terrorize the local populace for fun.
Carrying | Nothing.

Figure 2.1: Setting and character information for both self and partner characters as taken
from LIGHT.

Motivations: Timeline:
-4 hours | go to dangerous precipice
-15min | get knights armor from knight
-10 min | get golden dragon egg
Mid | Ineed to return the golden dragon egg to my treasure hoard. Now | hit knight
+5 min | putdragon egg on back
+15 min | eat the knight
+2 hours | go to the mountains

Short | Ineed to recover the dragon egg that was stolen and punish the knight.

Long | Ineed to build the largest hoard ever attained by any one dragon.

Figure 2.2: Motivations with different levels of abstractions and corresponding sequence
of timeline actions in chronological order for the self character in LIGHT-Quests. There
are 7486 quests in total.

] v Insssssolent pessst! I should immolate you for this tresssspasss.
And why is that, dragon?

] Ssstealing my preccciousss golden egg! I'll tell you what, I’ll give you 10 sssseconds to amussse me with your sssstory and THEN .
- I’ll burn you alive!

You said you wanted to attack me, dragon, did you not?

Go ahead, I'm lisssssstening.
get golden dragon egg

Now now! I would have given you that had you asked!
v Assssssk for my own property back? What a riduculousss notion ‘
Look here, I told you to watch your mouth and you didn’t, so leave or I’ll make you leave.

And now threatsss! Thisss is proving to be a mossst engaging conversssation.
hit knight
Give my regardsss to the valley floor below!

Figure 2.3: Example of a demonstration of a human (blue shaded) completing the above
quest while role-playing as the self character with a partner agent (grey shaded). There are
2111 such human demonstrations of average sequence length 12.92, consisting of 22672
dialogues in total.

they were also asked to provide a sequence of seven timeline actions—one action that needs
to be completed now and three before and after at various user-defined intervals—for how
the character might go about achieving these motivations.

Given the information in Figure 2.1, the crowdworkers completed the above outlined
tasks and produce data as seen in Figure 2.2. Motivations come in three levels of abstraction—

short, mid, and long—corresponding to differing amounts of the timeline. For example, the
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short motivation is always guaranteed to correspond most closely to the now position on
the timeline. Action annotation is pre-constrained based on the classes of verbs available
within LIGHT. The rest of the action is completed as free form text as it may contain novel
entities introduced in the motivations. There are 5982 training, 756 validation, and 748 test
quests. Further details regarding the exact data collection process and details of LIGHT-
Quests are found in Appendix B.4.

After collecting motivation and timelines for the quests, I deployed a two-player version
of the LIGHT game, letting players attempt the quests for themselves in order to collect hu-
man demonstrations. Figure 2.3 shows an example human expert demonstration of a quest.
Players were given a character, setting, motivation, and a partner agent and left to freely act
in the world and talk to the partner in pursuit of their motivations. The partner agent is a
fixed poly-encoder transformer model (Humeau et al. 2020) trained on the original LIGHT
data as well as other human interactions derived via the deployed game—using 111k utter-
ances in total. Players first receive a role-playing score on a scale of 1-5 through a Dungeon
Master (DM), a learned model that ranks how likely their utterances are given the current
context. Once they have accumulated a score reaching a certain threshold, they are allowed
to perform actions. I employ this gamification mechanism to encourage players to role-play
their character persona and its motivations, leading to improved user experience and data
quality (Horsfall and Oikonomou 2011). They are then given further reward if the actions
they perform sequentially match those on the timeline for the given quest. The game ends
after a maximum of six turns of dialogue per agent, i.e. twelve in total. The average se-
quence of a human demonstration is 12.92, with an average action sequence length of 2.18
and dialogue of 10.74. There are 1800 training, 100 validation, and 211 test human expert
demonstrations after the data was filtered. Additional details and examples are found in

Appendix B.4.1.
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2.2 Related Work on Language-Based Agents

Currently, three primary open-source platforms and baseline benchmarks have been devel-
oped so far to help measure progress in this field: Jericho (Hausknecht et al. 2020)° a learn-
ing environment for human-made interactive narrative games; TextWorld (Coté et al. 2018)%
a framework for procedural generation in text-games; and LIGHT (Urbanek et al. 2019)’
a large-scale crowdsourced multi-user text-game for studying situated dialogue. Further
extensions and adaptation to some of these benchmarks have been proposed for use in
neighboring domains such as vision-and-language navigation (Shridhar et al. 2021), com-
monsense reasoning (Murugesan et al. 2021), and procedural text understanding (Tamari
et al. 2021). In this dissertation, we focus on the first three mentioned.

Text Game Playing. In contrast to the parser-based games studied in this dissertation,
choice-based games provide a list of possible actions at each step, so learning agents must
only choose between the candidates. The DRRN algorithm for choice-based games (He et
al. 2016a; Zelinka 2018) estimates Q-Values for a particular action from a particular state.
This network is evaluated once for each possible action, and the action with the maximum
Q-Value is selected. While this approach is effective for choice-based games which have
only a handful of candidate actions at each step, it is difficult to scale to parser-based games
where the action space is vastly larger.

In terms of parser-based games, such as the ones examined in this dissertation, several
approaches have been investigated: LSTM-DQN (Narasimhan et al. 2015), considers verb-
noun actions up to two-words in length. Separate Q-Value estimates are produced for each
possible verb and object, and the action consists of pairing the maximally valued verb
combined with the maximally valued object. LSTM-DQN was demonstrated to work on
two small-scale domains, but human-made games, such as those studied in this chapter,

represent a significant increase in both complexity and vocabulary. This bifurcation of

Shttps://github.com/microsoft/jericho
®https://github.com/microsoft/textworld
https://parl.ai/projects/light
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value estimates allows the agent to reason about exponentially fewer actions, at the risk of
selecting poorly matched verb-object pairs.

One approach to affordance extraction (Fulda et al. 2017) identified a vector in word2vec
(Mikolov et al. 2013) space that encodes affordant behavior. When applied to the noun
sword, this vector produces affordant verbs such as vanquish, impale, duel, and battle. The
authors use this method to prioritize verbs for a Q-Learning agent to pair with in-game
objects.

An alternative strategy has been to reduce the combinatorial action space of parser-
based games into a discrete space containing the minimum set of actions required to fin-
ish the game. This approach requires a walkthrough or expert demonstration in order
to define the space of minimal actions, which limits its applicability to new and unseen
games. Following this approach, Zahavy et al. (2018) employ this strategy with their
action-elimination network, a classifier that predicts which predefined actions will not ef-
fect any world change or be recognized by the parser. Masking these invalid actions, the
learning agent subsequently evaluates the set of remaining valid actions and picks the one
with the highest predicted Q-Value.

The TextWorld framework (Coté et al. 2018) supports procedural generation of parser-
based interactive narrative games, allowing complexity and content of the generated games
to be scaled to the difficulty needed for research. TextWorld domains have already proven
suitable for reinforcement learning agents (Yuan et al. 2018) which were shown to be ca-
pable of learning on a set of environments and then generalizing to unseen ones at test
time. Recently, Yuan et al. (2019) proposed QAit, a set of question answering tasks based
on games generated using TextWorld. QAit focuses on helping agents to learn procedural
knowledge in an information-seeking fashion, it also introduces the practice of generating
unlimited training games on the fly. With the ability to scale the difficulty of domains,
TextWorld enables creating a curriculum of learning tasks and helping agents eventually

scale to human-made games.
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In the case of human-made text games, however, knowledge graphs—not directly pro-
vided by existing text game learning frameworks—have been shown to be superior state
representations when compared to just the textual observations by themselves. They aid in
the challenges of partial observability/knowledge representation (Ammanabrolu and Riedl
2019b; Adhikari et al. 2020; Sautier et al. 2020), combinatorial state-action spaces (Am-
manabrolu and Hausknecht 2020; Ammanabrolu et al. 2020d), and commonsense reason-
ing (Ammanabrolu and Riedl 2019b; Murugesan et al. 2020, 2021; Dambekodi et al. 2020).
These rest of the chapters in this dissertation will go explicitly into detail on the uses of
knowledge graphs in text games.

Transfer. Work in transfer in reinforcement learning has explored the idea of trans-
ferring skills (Konidaris and Barto 2007; Konidaris et al. 2012) or transferring value func-
tions/policies (Liu and Stone 2006). Other approaches attempt transfer in model-based
reinforcement learning (Taylor et al. 2008; Nguyen et al. 2012; Gasic et al. 2013; Wang
et al. 2015; Joshi and Chowdhary 2018), though traditional approaches here rely heavily
on hand crafting state-action mappings across domains. Narasimhan et al. (2017) learn
to play games by predicting mappings across domains using a both deep Q-networks and
value iteration networks, finding that that grounding the game state using natural language
descriptions of the game itself aids significantly in transferring useful knowledge between
domains.

In transfer for deep reinforcement learning, Parisotto et al. (2016) propose the Actor-
Mimic network which learns from expert policies for a source task using policy distillation
and then initializes the network for a target task using these parameters. Yin H. and Pan
(2017) also use policy distillation, using task specific features as inputs to a multi-task
policy network and use a hierarchical experience sampling method to train this multi-task
network. Similarly, Rusu et al. (2016) attempt to transfer parameters by using frozen pa-
rameters trained on source tasks to help learn a new set of parameters on target tasks.

Rajendran et al. (2017) attempt something similar but use attention networks to transfer
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expert policies between tasks. These works, however, do not study the requirements for
enabling efficient transfer for tasks rooted in natural language, nor do they explore the use
of knowledge graphs as a state representation.

Exploration strategies. Jain et al. (2019) extend consistent Q-learning (Bellemare et
al. 2016) to text-games, focusing on taking into account historical context. In terms of
exploration strategies, Yuan et al. (2018) detail how counting the number of unique states
visited improves generalization in unseen games. Madotto et al. (2020) use the GoEx-
plore (Ecoffet et al. 2021) to specifically explore text games using valid action handicaps.
Similarly, Jang et al. (2021) use valid action handicaps and linguistic priors to selectively
perform rollouts using Monte Carlo Tree Search.

Curriculum Learning. Curricula in reinforcement learning have traditionally been
used to set goals of steadily increasing difficulty for an agent (Bengio et al. 2009; Schmid-
huber 2013). The difficulty of these curricula are generally measured difficulty via proxy
of agent performance (Narvekar ef al. 2020). Given this measure most methods either
choose to adversarially set steadily goals of increasing difficulty (Sukhbaatar et al. 2018;
Racaniere et al. 2019; Campero et al. 2021) or to maximize learning performance based
on environment instances an agent finds difficult historically (Graves et al. 2017; Portelas
et al. 2020). While we were inspired by these works, they all focus on searching for goals
for agents which can be difficult to scale to complex tasks such our own natural language
motivation-based goals.

Goal oriented Dialogue This form of dialogue has traditionally been closely related to
specific tasks useful in the context of personal assistants with dialogue interfaces (Hender-
son et al. 2014; El Asri et al. 2017). RL has been studied for such tasks, usually to improve
dialogue state management (Singh et al. 2000; Pietquin et al. 2011; Fatemi et al. 2016) and
to improve response quality (Li et al. 2016). In particular, the negotiation tasks of Yarats
and Lewis (2017) and Lewis et al. (2017), where two agents are trying to convince each

other to perform certain actions, are related to the tasks in LIGHT-Quests. These works all
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lack environment grounding and the notion of diverse agent motivations.

Commonsense reasoning in language. Trabasso and Broek (1985) as well as Graesser
et al. (1991) introduce psychological theories relating commonsense reasoning with causal-
ity in natural language stories, wherein what is regarded as commonsense is based on the
“why” and “how” of the activities a certain character needs to perform to reach goals con-
sistent with their motivations. Works such as Bosselut ez al. (2019) and Guan et al. (2020)
focus on pre-training transformer-based language learning systems with large-scale com-
monsense knowledge graphs such as ATOMIC (Sap et al. 2019) and ConceptNet (Speer
and Havasi 2012) for use in knowledge graph completion and story ending generation re-
spectively. Murugesan et al. (2020), Ammanabrolu et al. (2020d), Fulda et al. (2017),
Dambekodi et al. (2020), and Ammanabrolu and Riedl (2019a) look at commonsense rea-
soning in interactive environments, with the former focusing on affordance extraction us-
ing word embeddings and the latter three on transferring text-game playing skills via pre-
training using question-answering and large-scale knowledge graphs.

Language-informed reinforcement learning. Luketina et al. (2019) provide an overview
of RL informed by natural language. Of these works, the ones most related to ours are those
falling into the category of instruction following—where an agent’s tasks are defined by
high level instructions describing desired policies and goals (MacMahon et al. 2006; Kol-
lar et al. 2010). Visual and embodied agents using natural language instructions (Kolve e?
al. 2017; Bisk et al. 2016; Anderson et al. 2018) or in language-based action spaces (Das
et al. 2017) utilize interactivity and environment grounding but have no notion of agent
motivations, nor make any attempt to explicitly model commonsense reasoning.

World Models. World modeling via model-based reinforcement learning often serves
to learn transition models of an environment to allow for simulation without actually inter-
acting with the environment (Arulkumaran et al. 2017). Ha and Schmidhuber (2018) use
Variational Autoencoders (VAEs) combined with recurrent neural networks to learn com-

pressed state representations over time of visual reinforcement learning environments (Brock-
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man et al. 2016). This model is then used to simulate an environment and learn a control
policy in it. Other contemporary works attempt to also learn dynamics models using raw
pixels in the context of games such as Atari (Oh et al. 2015; Kipf et al. 2020), and Su-
per Mario Bros. (Guzdial et al. 2015) as well as 3D simulations (Kipf et al. 2020) and
robotics (Watter ef al. 2015; Wahlstrom er al. 2015). We note that in all of these works,
in addition to the state space being raw pixels—the action space is fixed and orders of

magnitude smaller than in text games.

2.3 History of Text-Game Generation

Outside of this, there has been some work on learning to create content in the context
of interactive narrative. These systems mainly work to overcome a significant bottleneck
in the form of the human authoring required to create such works. Permar and Magerko
(2013) present a method of generating cognitive scripts required for freeform activities in
the form of pretend play. Specifically, they use interactive narrative—a form of pretend play
that requires a high level of improvisation and creativity and uses cognitive scripts acquired
from multiple experience sources. They take existing cognitive scripts and blend them in
the vein of more traditional conceptual blending (Veale et al. 2000; Zook et al. 2011) to
create new blended scripts. Closely related is (Magerko and O’Neill 2012) who present a
Co-Creative Cognitive Architecture (CoCoA), detailing the set of components that support
the design of co-creative agents in the context of interactive narrative. These methods all
follow singular cognitive models that do not learn to generate content automatically.

Li et al. (2012) present Scheherazade, a system which learns a plot graph based on sto-
ries written by crowd sourcing the task of writing short stories through Amazon Mechanical
Turk. This plot graph contains details relevant for the coherence of the story and includes:
plot events, temporal precedence, and mutual exclusion relations. The generated narrative
contains events that can be executed from this plot graph by both players and non-player

characters. Guzdial et al. (2015) introduce Scheherazade-interactive narrative, a system
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that learns to generate choose-your-own-adventure style interactive fictions in which the
player chooses from prescribed options. More recently, Martin et al. (2017) introduce a
pipeline systems for improvisational storytelling agents capable of collaboratively creating
stories. These agents first focus on creating a plot for the story and then expand that plot
into natural language sentences.

Giannatos et al. (2011) use genetic algorithms to create new story plot points for an
existing game of interactive fiction using an encoding known as a precedence-constraint
graph. This graph gives the system information regarding the ordering of events that must
happen in the game in order to advance. They demonstrate the workings of their system
by generating additional content for the popular interactive fiction game Anchorhead, and
show that this can be integrated into the original game.

The Game Forge system (Hartsook ef al. 2011) also uses genetic algorithms to generate
a game world and plot line for related type of game, a computer role playing game (CRPG).
This work focuses on generating layouts and plot structures to create novel game worlds
through with a fitness function based on a transition graph that encodes pre-built game
requirements. Tamari et al. (2019) focus on extracting action graphs for sequential decision
making problems such as material science experiments and turn them into text-adventure
games. Fan et al. (2019) leverage LIGHT (Urbanek et al. 2019)—a crowdsourced dataset
of fantasy text-adventure dialogues—to learn to generate interactive fiction worlds on the

basis of locations, characters, and objects.
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CHAPTER 3
MODELING PARTIALLY OBSERVABLE WORLDS

In this chapter, I focus on one of the core challenges faced by learning agents in these
environments—as identified earlier—knowledge representation.

The knowledge representation challenge rises from the fact that interactive narratives
span many distinct locations, each with unique descriptions, objects, and characters. Play-
ers move by issuing navigational commands, which can convey Euclidean space like go
West or non-Euclidean span like step into portal, warping the agent to an entirely new sec-
tion of the world. To cope with such challenges, humans often create structured memory
aids such as hand drawn maps when attempting to play these games. A good knowledge
representation can assist with long-term action dependencies that often arise in game quests
(as well as real world environments). An example of a long-term dependency is a key be-
ing found in one location that opens a lock on a chest in an entirely different section of the
map. For an agent to learn this relationship, it must be able to replicate the sequence of
picking up the key and unlocking the chest while not being distracted by interstitial actions
and states.

The knowledge representation challenges inherent to interactive narrative games give
rise to the Textual-SLAM problem, a textual variant of Simultaneous Localization And
Mapping (SLAM) (Thrun et al. 2005) problem of constructing a map by inferring infor-
mation from one’s surroundings while navigating a novel environment. As in humans,
the creation of such world models or memory aids in agents—in the form of knowledge
graphs—has been shown to be critical in helping automated learning agents operate in
these textual worlds (Ammanabrolu and Riedl 2019b; Murugesan et al. 2020; Adhikari et
al. 2020; Ammanabrolu and Hausknecht 2020).

I approach this problem of knowledge representation as a world modeling problem.
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Key:

[ ] Locations
Surr. Obj.s
Inv. Obj.s
Attributes
go north leaflet mailbox
leaflet house open- I:>
able lis
West of House house open-
You are standing in an open field west of a white North of House 2l
house, with a boarded front door. There is a small You are facing the north side of a white house. There is
mailbox here. no door here, and all the windows are boarded up. To the
Leaflet taken. north a narrow path winds through the trees.
You are empty-handed You are carrying: a small leaflet
Prev act: take leaflet Prev act: go north
Valid acts: go north, go south, go west, open mailbox Valid acts: go north, go east, go west, drop leaflet

Figure 3.1: Two subsequent states in Zorkl consisting of: textual observations, world
knowledge graphs, valid actions, and actions taken.

World models, often in the form of probabilistic generative models, are used in conjunction
with model-based reinforcement learning to improve a learning agent’s ability to operate in
various environments (Sutton and Barto 1998; Arulkumaran et al. 2017). They are inspired
by human cognitive processes (Jancke 2000), with a key hypothesis being that the ability
to predict how the world will change in response to one’s actions will help you better plan
what actions to take (Ha and Schmidhuber 2018). Evidence towards this hypothesis comes
in the form of studies showing that simulating trajectories using internal learned models
of the world improves sample efficiency in learning to operate in an environment (Ha and
Schmidhuber 2018; Schrittwieser et al. 2019).

I show that a state representation in the form of a knowledge graph gives us the ability to
not only map a textual world but also act more effectively in it. A knowledge graph captures
the relationships between entities as a directed graph. The knowledge graph provides a
persistent memory of the world over time and enables the agent to have a prior notion of

what actions it should not take at a particular stage of the game.

3.1 Knowledge Graphs for POMDPs

Knowledge graphs have been demonstrated to improve natural language understanding in

other domains outside of text adventure games. For example, Guan et al. (2018) use com-
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monsense knowledge graphs such as ConceptNet (Speer and Havasi 2012) to significantly
improve the ability of neural networks to predict the end of a story. They represent the
graph in terms of a knowledge context vector using features from ConceptNet and graph
attention (Velickovi€ et al. 2018). The state representation that I have chosen as well as my
method of action pruning builds on the strengths of existing approaches while simultane-
ously avoiding the shortcomings of ineffective exploration and lack of long-term context.
In my approach, my agent learns a knowledge graph, stored as a set of RDF triples, i.e.
3-tuples of (subject,relation, object). For example, from a phrase such as “There is an
exit to the north” one can infer a has relation between the current location and the direction
of the exit. The resultant knowledge graph gives the agent what essentially amounts to a
mental map of the game world. The knowledge graph is updated after every agent action
(see Figure 3.1). A special node—designated “you”—represents the agent and relations
out of this node are updated after every action with the exception of relations denoting the

agent’s inventory. Other relations persist after each action.

3.1.1 JerichoWorld Dataset

In order to learn these knowledge graphs, I introduce and use the JerichoWorld Dataset.! It
contains 24,198 mappings between rich natural language observations and: (1) knowledge
graphs in the form of a set of tuples (s, 7, 0) (such that s is a subject, r is a relation, and o
is an object) that reflect the world state in the form of a map; (2) a set of natural language
actions that are guaranteed to cause a change in that particular world state. An example
of the mapping between rich natural language observations and structured knowledge is
illustrated in Figure 3.1. The training data is collected across 27 text games in multiple
genres and contains a further 7,836 heldout instances over 9 additional games in the test
set.

Each instance of the dataset takes the form of a tuple of the form (S;, A, S;,1, R) where

Thttps://github.com/JerichoWorld/JerichoWorld
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Sy and Si4 are two subsequent states with A being the action used to transition between
states and R the observed reward. As mentioned earlier, each of the states in the tuple
contain information regarding the observation O, € S;, ground truth knowledge graph
G; € S and valid actions for that state V; € S;. This data was collected by oracle
agents, i.e. agents that can perfectly solve a game, exploring using a mix of an oracle and
random policy to ensure high coverage of a game’s state space. Game walkthroughs are
texts describing the solutions to games, generally retrieved from the internet, but already
part of the Jericho framework. Walkthroughs, however, only present one possible solution
to a game and solve all the core puzzles required to complete a game with the maximum
possible score.

To achieve greater coverage of the game’s state space, my data collection agent stops
off to explore by executing random valid actions for n steps before resetting to the walk-
through. One such collected state—a part of the full tuple mentioned—is detailed below.

The textual observations consist of descriptions of the location and inventory as well as

the game engine response to the previous action performed. For example:

Game: ztuu

Location: Cultural Complex This imposing ante-room, the center of what was apparently the
cultural center of the GUE, is adorned in the ghastly style of the GUE’s "Grotesque
Period." With leering gargoyles, cartoonish friezes depicting long-forgotten scenes of
GUE history, and primitive statuary of pointy-headed personages unknown (perhaps very
, very distant progenitors of the Flatheads), the place would have been best left
undiscovered. North of here, a large hallway passes under the roughly hewn inscription
"Convention Center." To the east, under a fifty-story triumphal arch, a passageway
the size of a large city boulevard opens into the Royal Theater. A relatively small
and unobtrusive sign (perhaps ten feet high) stands nearby. South, a smaller and more
dignified (i.e. post-Dimwit) path leads into what is billed as the "Hall of Science."
You can see a pair of razor-like gloves here.

Observation: You put on the razor-like gloves.

Inventory:

You are carrying:

a brass lantern (providing light)
a pair of glasses

four candy bars:
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a zZM$100000
a Multi-Implementeers
a Forever Gores
a Baby Rune
a cheaply-made sword

Prev Act: put on gloves

I further provide the set of objects that are found in both the agent’s inventory and sur-
roundings, including textual descriptions for each of the objects. Attributes for each of
these objects are also included are acquired by decompiling the games, following (Am-

manabrolu et al. 2020d). For example:

Inventory Objects:

candy: Which do you mean, the ZM$100000, the Multi Implementeers, the Forever Gores or
the Baby Rune?

Implementeers: The profiles on the wrapper of this delicacy look more like Moe, Larry,
and Curly than those of your favorite Implementeers (presumably, Marc, Mike, and
David.)

Forever/Gores: The wrapper of this bar pictures the Milky Way, but the stars are all
blood red. Kids love them.

sword: This is a cheaply made sword of no antiquity whatsoever. With regard to grues or

other underworldly denizens, your weapon is as likely to engender laughter as fear

rune: The label is covered with mystical runes, the meanings of which elude you.
glasses: The owner of these glasses had an indeterminate vision problem, because the
lenses have both been crushed underfoot. The vision problem, of course, has been
solved.
lantern: The lantern, while of the cheapest construction, appears functional enough for
the moment. Your best hope is that it stays that way. It looks like the lamp has
gone through a few cycles of impact revitalization.
Inventory Attributes:
glasses: clothing
gloves: clothing
sword: animate, equip
lantern: animate, equip
Surrounding Objects:
gargoyles: Unless you are inordinately masochistic, the less time spent examining the
artwork, the better.
east: You see nothing special about the east wall.

tunnel: The tunnel leads west.
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gloves: The razor like gloves would be very attractive for an axe murderer. And they’re
just your size.

south: You see nothing special about the south wall.

sign: The sign indicates today’s performance, which (in honor of the festivities in the
Convention Center) is "A Massacre on 34th Street."

Surrounding Attributes:
gloves: clothing
tunnel: animate

sign: animate

I further provide the ground truth knowledge graph representing the world state corre-
sponding to these textual observations. The ground truth knowledge graph is a set of tuples
(s,r,0) such that s is a subject, r is a relation, and o is an object. It reflects information
on the current state such as objects and attributes and is extracted from the game engine by
traversing the engine’s internal representation and converting it to human readable form.
Relations are defined on the basis of traversal operations in the game engine’s internal rep-
resentation, e.g. “in”” and “have” signify parent-child ownership for locations and inventory

respectively. For example:

Graph: [sign, in, Cultural Complex], [you, have, Forever Gores], [you, have, ZM$100000], [
you, have, Baby Rune], [tunnel, in, Cultural Complex], [you, in, Cultural Complex], [
you, have, brass lantern], [you, have, glasses], [decoration, in, Cultural Complex], [
you, have, cheaply-made sword], [you, have, Multi-Implementeers], [you, have, razor-
like gloves], [glasses, 1s, clothing], [gloves, 1is, clothing], [sword, is, animate], [
tunnel, is, animate], [sign, is, animate], [lantern, is, animate], [sword, is, equip],

[lantern, is, equip]

Valid actions are defined by Hausknecht ef al. (2020) as the set of actions guaranteed to
cause a change in the current world state and are identified by the Jericho framework. For

example in one particular state me might have the following valid actions:

Valid Actions: west, turn lantern off, east, south, put multi down, put forever down, put
lantern down, put rune down, put glasses down, put sword down, take razor off, put on
glasses, examine glasses, lower razor, throw multi, throw lantern, put multi in

glasses, north

Tasks. Given this dataset, I focus on two tasks within it as formally defined by Jeri-

choWorld. A successful world model will be able to accomplish both of these tasks.
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Figure 3.2: The transformation between subsequent world knowledge graphs G; and G,
based on the states in Figure 3.1. The green (Gr) outlined portions in the center are additions

to Gy to get G411 (i.e. Gri1 — Gy) and the red (R) portions similarly represent deletions to
Gt (le Gt — Gt-f—l)-

1. Knowledge Graph Generation: this task involves predicting the graph at time step
t+1:Gy1 € Spyq given the textual observations, valid actions, and graph at time

stept : O, Vi, Gy € Sy, and action A for all samples in the dataset.

2. Valid Action Generation: this task is formally defined as predicting the set of se-
quences of valid actions at time step t+1 : V11 € S;y1 given the textual observations,
valid actions, and graph at time step ¢ : Oy, V;, G; € S}, and action A for all samples

in the dataset.

3.2 The Worldformer

This section describes the core methodological contributions of my work in creating world
models for text games. [ first show how knowledge graph generation can be simplified
to predicting the graph difference between agent steps. I then describe the Worldformer,
a transformer-based architecture, and end-to-end training method—including an objective
function—that treats both of the world modeling tasks as a Set of Sequences generation

problem.
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3.2.1 Knowledge Graph Difference Generation

Figure 3.2 describes the gist of my simplification of the knowledge graph generation prob-
lem. Recall that knowledge graphs are directed graphs that are stored the form of a set of
tuples as (s, r,0) such that s is a subject, r is a relation, and o is an object. Let the knowl-
edge graphs representing the world state at two subsequent steps be G; and G, 1. At every
step, tuples are either added or deleted from the graph G; to update the belief state about
the world and turn it into graph G . Using this observation, I can simplify the knowledge
graph generation problem. Instead of predicting Gy, given G, and prior context, I can
instead predict the differences between the two graphs.

In Figure 3.2, between steps ¢ and ¢ + 1, I see that G;,; — G, is the set of tuples that are
added to G; and G; — G4 the set of tuples are are deleted from G,. Together they make
up the graph differences. Here, I make a second key observation that allows for yet further
simplification of the problem. This observation is based on generally applicable properties
of such worlds: (1) locations are fixed and unique, i.e. the positions of locations with
respect to each other does not change; (2) objects and characters can only be in one location
at a time; and (3) contradicting object attributes can be identified using a lexical dictionary
such as WordNet (Miller 1995), e.g. an object cannot be both open and closed at the same
time. These properties let us uniquely identify the triples to be deleted from the graph
Gy — G441 given triples to be added to the graph G;,; — G;. Additional implementation
details can be found in Appendix A.2.

Taken together, the Knowledge Graph Generation task can be cast as follows: predict
the nodes to be added to the graph G, at time step ¢ : G¢; — G; (a much smaller set than
G11 by itself) to transform it into graph G, ; given the textual observations, valid actions,

and graph at time step ¢ : Oy, V;, G; € S, and action A for all samples in the dataset.
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3.2.2 Multi-task Architecture

The Worldformer is a multi-task world model that simultaneously learns to perform both
knowledge graph and valid action generation. It is built on the hypothesis that each of these
tasks contains information crucial to the other—the valid actions that can be executed at
any timestep are entirely dependent on the current state and vice versa the state knowledge
graph updates on the basis of the previously executed action.

Figure 3.3 describes the architecture of the Worldformer. The inputs to the architecture
are textual observations, valid actions, and graph at time step t : O, V,,G; € S;. O,
and V; are encoded through a bidirectional text encoder into O¢. In my work, I used an
architecture similar to BERT (Devlin et al. 2019) with the original pre-trained weights that
are then fine-tuned using a masked language model (MLM) loss on observations taken from
the training data. Oy is the output of the final hidden layer. The graph encoder receives G
and encodes it into G. It is also similar to BERT, but is pre-trained on knowledge graphs
found in the training data using a MLM loss with a phrase-level masking scheme where
whole components of a (s, 7, 0) graph triple (individual underlined portions in Figure 3.3)
are masked at once. Again, G is the output of the final hidden layer.

O; and Gy are passed into a representation aggregator which then sends the combined
encoded state representation Sy to one of two autoregressive decoders that have the same
general internal architecture as GPT-2 (Radford et al. 2019). This aggregator is a small
transformer sand-witched between linear layers that is meant to reduce the dimension of
the input vector representation, more details are found in Appendix A. During training, the
first decoder is conditioned on Sy directly and Oy through cross-attention and takes in the
valid actions of the next state 1}, as input, learning to predict the same input sequence
shifted to the right as sequence-to-sequence models do. Similarly, the second decoder is
conditioned on S; directly and G¢ through cross-attention and takes in the knowledge graph

of the next state G\, ,1 — G as input.
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Figure 3.3: The Worldformer architecture. The text encoder (B) and graph encoder (R)
have similar architecture but different pre-training strategies. Both the decoders are not
pre-trained and have identical architectures. Solid black lines indicate gradient flow.

3.2.3 Set of Sequences Generation and Training

I observe that both the knowledge graph difference G;; — G, and the valid actions V;,,
are both Sets of Sequences where the ordering of the sequence of tokens within an action
or a graph triple matters but the ordering of all the actions and triples does not. Standard
autoregressive decoding used in sequence-to-sequence (Seq2Seq) models (Sutskever et al.
2014) does not account for such permutation invariance. I frame the graph and action
prediction tasks as a generation of a Set of Sequences (SOS) problem—expanding on the
simple set prediction problem definition proposed by works such as Deep Sets (Zaheer et
al. 2017) to account for the specific structure of Sets of Sequences. This problem structure
is used to then formulate a training methodology that lets autoregressive decoders better
account for the SOS structure.

For both of the decoders in Figure 3.3, we are given a target sequence Y = {y1, ..., ym }
and some input context via the encoders X . Standard autoregressive techniques factor the

distribution over the target sequence into a chain of conditional probabilities with a causal
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left to right structure.
M+1

P(Y|X;0) = [ p(vilyoi-1, X;6) (3.1)

i=1
Where 6 represents the overall network parameters. This can then be used to formulate a

maximum likelihood training loss with cross-entropy at every step.

M+1

Lieg =logP(Y]X;60) = > " logp(yi|yoi—1, X; 0) (3.2)

i=1

In my setting, we can group elements in Y into its set of sequences form

}/;os = {yllygw’}vy; S V;H-l or y; € Gt+1 - Gt7M/ <M

where ¥ = {yx...yx11}, Zlen(y}) =M (3.3)
J

Via the decoders, we seek to learn a transformation from S; € IR? (the input d-
dimensional state representation vector) and Yy, € ) (decoder inputs in the space of all
possible decoder inputs ))) that map to the permutation invariant target set of sequences
Yios. This function can then be defined as f : RIU2Y — 2Y as the permutation invariance

of part of the domain and range of this function makes it the power set of ).
Combining this definition of permutation invariant functions with Eq. 3.2, 3.3, we can

factorize the distribution over the output Set of Sequences as the following chain of proba-

bilities:
M+1
(Yaos| X5 0) H p(yi|X; 0) (3.4a)
l+n
pWiIX:0) = [ [ pwelyin—1, X;0) (3.4b)

k=l

where [ = Z len(y;), n = len(y;)

J<i

With the key intuition here being that Eq. 3.4a factorizes the distribution such that each
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element of Y. is independent of other elements in the set, but tokens of an element v, in
the set are conditioned on preceding tokens within the element (Eq. 3.4b).
This in turn gives us a maximum likelihood Set of Sequences loss that can be used to

train a model to output a Set of Sequences.

£sos = 1OgP(§/sos|X; Q)

M+1

Loos =Y logp(yi|X;0) (3.5a)
i=1
M++1 I+n
Loos=Y_ > logp(yelyix—1, X;0)
i=1 k=l
where | = Z len(y;), n = len(y;) (3.5b)

Jj<i

In my formulation, I have observation sequences at timestep ¢ : O;, V; encoded into
O, graph G; encoded into Gy, and all of them combined into S¢, with the output Sets of
Sequences at timestep ¢ + 1 being the graph difference G, — G; and valid actions V; 1.

Across the two decoders, this gives us a combined loss:

Lorld = IOgP(Gt+1 - Gt|st7 Gy; 9) + 10gP(V}+1|St, Oy; 9) (3.6)

This loss is used to multi-task train the Worldformer simultaneously across the two tasks.

3.3 Evaluation

I evaluate the Worldformer by comparing it on both of the tasks across 9 never-before-
seen testing games against strong baselines. I further present ablation studies in each task
to determine the relative importance of each of the techniques presented in the previous

section.
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3.3.1 Knowledge Graph Generation

All sequence models use a fixed graph vocabulary of size 7002 that contains all unique
relations and entities at train and test times.

Metrics. For this task, I report two types of metrics (Exact Match or EM and F1)
operating on two different levels—at a graph tuple level and another at a token level. EM
checks for direct overlap between the predictions and ground truth, while F1 is a harmonic
mean of predicted precision and recall. The graph level metrics are based on matching the
set of (subject, relation, object) triples within the graph, all three tokens in a particular
triple must match a triple within the ground truth graph to count as a true positive. The
token level metrics operate on measuring unigram overlap in the graphs, any relations or

entities in the predicted tokens that match the ground truth count towards a true positive.

Baselines

I compare the Worldformer to 4 baselines taken from contemporary knowledge graph-
based world modeling approaches in text games—three of which have been developed and
introduced by me.

Rules. Following Ammanabrolu and Hausknecht (2020) (or as seen in Chapter 4), |
extract graph information from the observation using information extraction tools such as
OpenlE (Angeli et al. 2015) in addition to some hand-authored rules to account for the
irregularities of text games.

At every step, given the current state and possible attributes as context. The rest of the

triples are extracted using OpenlE (Angeli et al. 2015).

e Linking the current room type (e.g. “Kitchen”, “Cellar”) to the items found in the

room with the relation “has”, e.g. (kitchen, has,lamp)

e All attribute information for each object is linked to the object with the relation “is”.

e.g. (egg,is,treasure)
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e Linking all inventory objects with relation “have” to the “you” node, e.g. (you, have, sword)

e Linking rooms with directions based on the action taken to move between the rooms,
e.g. (Behind House, east of, Forest) after the action “go east” is taken to go from

behind the house to the forest

Question-Answering. This baseline comes from the Q*BERT agent described in Am-
manabrolu et al. (2020d) (or as seen in Chapter 4). It is trained on the SQuAD 2.0 (Ra-
jpurkar et al. 2018), the Jericho-QA text game question answering dataset (Ammanabrolu
et al. 2020d) on the same set of training games as found in Worldformer, and then on
Worldformer itself by formatting my dataset in the style of questions and answers when
possible. It uses the ALBERT (Lan et al. 2020) variant of the BERT (Devlin et al. 2019)
natural language transformer to answer questions and populate the knowledge graph via a
few hand-authored rules from the answers. Examples of questions asked include: “What is
my current location?”, “What objects are around me?”.

Seq2Seq. I introduce an encoder-decoder based sequence-to-sequence learning ap-
proach (Sutskever et al. 2014) inspired by the transformer model BART (Lewis et al.
2020). The model architecture consists of a bidirectional encoder such as BERT (Devlin
et al. 2019) that takes the full set of textual observations—including location and inven-
tory descriptions—as input and an autoregressive decoder such as GPT-2 (Radford et al.
2019) which takes in the current graph and learns to predict the graph sequence shifted by
a token. The weights of the encoder are fine-tuned from BERT’s original weights on both
the graphs, in triple form, and the textual observations taken from the training games using
a masked language modeling loss. The decoder is not pre-trained. During test time, only
the starting token is given to the decoder and it decodes the graph token by token via bean
search until an end-of-sequence token is reached.

GATA-World. I adapt the Graph-Aided Transformer Agent (Adhikari e al. 2020) to
my task. It consists of the same encoder structure as the Worldformer but contains one

decoder that performs single-task Seq2Seq learning to decode both the set of tuples that
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Table 3.1: Results across both the tasks for the models specified. Overall indicates a size
weighted average. All experiments were performed over three random seeds, with stan-
dard deviations not exceeding +3.2 in any of the overall categories for KG prediction and
+1.2 for valid action prediction. Bolded results indicate highest overall scores. Asterisk
(*) indicates when the top result is significantly higher (p < 0.05 with an ANOVA test
followed by a post-hoc pair-wise Tukey test) over all alternatives. | indicates this result is
not significantly higher than Worldformer.

Met- | Game | zorkl lib. det. bal. pent. | ztuu ludi. | deep. | temp. overall

Expt.

rics Size 886 654 434 990 276 462 | 2210 630 1294 7836

Knowledge Graph Prediction
Gr. EM 3.72 7.61 1.39 9.17 6.44 4.94 5.10 0.49 2.48 4.70
Rules F1 446 | 12.87 455 | 11.90 | 10.22 | 10.06 8.37 0.64 3.36 7.25
Tok. EM 6.08 | 10.33 7.51 | 32.53 | 1648 | 1440 | 1447 3.34 7.42 13.08
F1 8.42 | 26.74 | 10.23 | 36.09 | 23.36 | 21.74 | 18.48 3.86 9.44 17.50
Q*BERT Gr. EM | 2456 | 29.14 | 3445 | 41.22 | 2896 | 22.17 | 41.44 442 | 36.84 32.79
(Question ' F1 | 24.88 | 3146 | 36.23 | 41.85 | 30.12 | 26.26 | 46.74 4.66 | 39.86 35.48
Answering) Tok EM | 4393 | 49.78 | 60.28 | 85.81 | 65.02 | 49.44 | 57.58 9.31 | 48.98 53.581
i F1 | 4831 | 52.76 | 63.21 | 86.18 | 69.54 | 49.82 | 60.95 9.84 | 49.17 55741
Gr. EM | 1244 | 1842 | 26.86 8.19 | 22.18 | 16.89 | 12.94 8.38 16.48 14.29
Seq2Seq : F1 12.96 | 18.89 | 29.48 9.04 | 2354 | 16.89 | 14.18 | 1047 | 18.52 15.54
Tok. EM | 18.01 | 20.26 | 35.86 | 17.60 | 25.48 | 17.19 148 | 13.25 | 2248 18.80
F1 | 21.12 | 20.84 | 3586 | 18.86 | 27.72 | 17.87 | 1542 | 13.25 | 24.34 19.96
Gr. EM | 2230 | 2472 | 21.72 | 23.68 | 22.81 | 27.00 | 24.55 | 23.76 | 24.52 24.06
GATA-W : F1 | 2534 | 2647 | 22.14 | 2654 | 27.63 | 27.00 | 24.55 | 23.76 | 24.92 25.19
Tok. EM | 33.09 | 33.88 | 25.64 | 34.64 | 37.71 | 3581 | 3594 | 3248 | 40.89 35.31

F1 | 3393 | 34.86 | 25.80 | 38.68 | 39.59 | 38.88 | 37.16 | 32.48 | 43.97 37.10
EM | 21.62 | 3439 | 41.05 | 50.41 | 30.00 | 41.56 | 40.10 | 41.87 | 42.43 39.15*
F1 | 2444 | 3439 | 4453 | 52.43 | 3430 | 42.20 | 41.65 | 4274 | 45.17 41.06*
EM | 4288 | 41.98 | 54.39 | 6222 | 49.00 | 50.80 | 51.29 | 50.04 | 53.81 51.32

Worldformer | Gr.

Tok. F1 48.12 | 41.98 | 59.13 | 62.22 | 49.00 | 52.24 | 51.29 | 50.04 | 54.96 52.45
Valid Action Prediction

Seq2Seq Act EM 16.65 | 15.13 | 18.19 | 16.19 | 23.39 | 14.75 | 20.10 | 14.71 20.34 18.10
F1 17.85 | 16.88 | 21.12 | 18.23 | 25.87 | 15.13 | 20.86 | 14.86 | 22.14 19.44

CALM Act EM 18.67 | 11.18 | 17.37 | 10.04 | 13.77 | 11.29 | 15.49 | 10.31 13.13 13.79
F1 18.90 | 2549 | 3442 | 12.16 | 34.40 9.95 | 20.94 7.84 18.57 19.11

World- Act EM 23.08 | 22.55 | 2097 | 29.08 | 27.05 | 20.71 | 21.36 | 24.04 | 22.80 23.22*
former F1 23.50 | 26.52 | 25.28 | 32.89 | 31.32 | 23.66 | 22.27 | 26.12 | 25.66 25.54*

must be added as well as deleted from the graph in the form of: (add, nodel, node2,
relation) or (del, nodel, node2, relation). This is equivalent to predicting (G — G;) U
(Gy — Gy41). Tt is trained with the Seq2Seq cross-entropy loss (Eq. 3.2).

Analysis Table 3.1 describes the results in this task over all the games. I see that on
the graph level metrics, the Worldformer performs significantly better than all other other
baselines. On the token level metrics, the Worldformer and QA method are comparable—
the difference between these two methods are statistically non-significant (p = 0.18) with
each other but both significantly (p < 0.05) higher than all others. The QA method, and
other extractive methods, highlight portions of the input observation that form the graph and

are particularly well suited for the token level metrics. The JerichoWorld developers note
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Table 3.2: Worldformer ablations to test the impact of its three main components for KG
prediction. All results are size weighted averages over all test games over three random
seeds, with standard deviations not exceeding +3.2 in any category.

Ablation Graph Token
Graph | Multi | SOS EM F1 EM Fl

Diff Task | Loss

14.29 | 15.54 | 18.80 | 19.96
v v 129.29 | 31.41 | 39.99 | 41.02
v v | 32.60 | 34.65 | 42.74 | 44.35
v v 3594 | 36.17 | 48.82 | 50.18
v v v 139.15 | 41.06 | 51.32 | 54.45

that these approaches are prone to over-extraction, i.e. extracting more text than is strictly
relevant from the input observation aiding token level overlap but resulting in a sharp drop
in terms of the graph level metrics. Recall that text games are partially observable and so
the textual observations themselves may potentially be incomplete. An example of such
an observation is: “You see a locked chest in front of you in the cellar.”. The ground truth
graph for this would be: (you, in, Cellar), {chest, in, cellar), (chest, is, lockable), (sword,
in, chest). The last fact in the graph, the sword being in the chest, is not revealed to you
via the observation until you open the chest and thus cannot be predicted by extractive
approaches like Rules and QA. The Worldformer is able to make a informed guess as to
the contents of the chest due to its training, providing a form of look ahead that the Rules
and QA systems cannot.

Table 3.3 present the results of an ablation study testing the relative importance of the
three main components of the Worldformer: graph difference prediction, multi-task train-
ing, and the SOS loss. I note that a model without any of these components is equivalent to
the Seq2Seq approach described previously. I see significant drops in performance, partic-
ularly on the graph level metrics, when any single one of these components are removed.
This indicates that all three components are necessary for the Worldformer to achieve state-
of-the-art performance.

In particular, I note that the largest performance drop was when Worldformer did not
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use the graph difference simplification. In this case, the KG prediction task is simplified to
predicting only; the length of the set of sequences G;;1 — G; is much smaller than G, .
There are on average 3.42 triples or 10.42 tokens per state across the JerichoWorld test
dataset for Gy ; — G but a mean of 8.71 triples or 26.13 tokens per state for G, ;. This also
explains the increased performance of the GATA-W over the baseline Seq2Seq agent—this
agent only needs to predict on average 5.04 rules or 20.16 tokens across the testing games.
Predicting a smaller number of triples and tokens per state makes the problem relatively
more tractable for world modeling agents. Qualitative examples illustrating these trends

are found in Appendix A.3.1.

3.3.2 Valid Action Generation

Similarly to the other task, I compare the Worldformer to an existing baseline for valid
action prediction. All models use a fixed vocabulary of size 11,056 at train and test times.

Metrics. For this task, I adapt the graph level Exact Match (EM) and F1 metrics as
described in the previous task to actions. In other words, positive EM or F1 happens only
when all tokens in a predicted valid action match one in the gold standard set. Given that
most valid actions have less than four tokens, I do not use standard Seq2Seq metrics—
such as BLEU (Papineni et al. 2002)—intended for measuring n-gram overlap in longer
sequences.

Seq2Seq. This single-task model is identical to the Seq2Seq model described in the
previous task but is single-task trained to predict valid actions.

CALM. I would like to note the presence of a complementary dataset of observation-
action pairs created by humans on the ClubFloyd online Interactive Narrative forum.? This
dataset appears in both Ammanabrolu and Hausknecht (2020) and Yao et al. (2020) with
the latter using it to tune a GPT-2 model for valid action prediction using a GPT-2 based

Seq2Seq valid action model dubbed CALM.? This model takes in O;, A, O, and attempts

Zhttp://www.allthingsjacq.com/interactive_fiction.html
3https://github.com/princeton-nlp/calm-textgame

42


http://www.allthingsjacq.com/interactive_fiction.html
https://github.com/princeton-nlp/calm-textgame

Table 3.3: Worldformer ablations to test the impact of its two main components for action
prediction. All results are size weighted averages over all test games over three random
seeds, with standard deviations not exceeding +1.2 in any category.

Ablation Act
Multi | SOS
Task | Loss EM F1
18.10 | 19.44
v | 20.78 | 22.42
v 20.12 | 21.28
v v | 23.22 | 25.54

to output V.

In Table 3.1, we see that the Worldformer significantly outperforms the Seq2Seq base-
line on all the games and CALM overall. Each valid action in a text game requires at most
5 tokens. This combined with an average of 10.30 valid actions per test state means that
for every state I would need to generate about 52 tokens. Yet further, the vocabulary size
for actions is 11, 056, larger than the graph vocabulary of 7, 002. This increase in task dif-
ficulty explains the relative decrease in the magnitude of performance metrics between KG
and valid action prediction tasks.

Both the Seq2Seq model and CALM—which is trained on a different dataset—are com-
parable on F1 scores but Seq2Seq is better overall for exact matches. CALM also has rel-
atively higher variance in performance across the test games than the other two methods—
e.g. on some games such as zorkl and detective it outperforms the Seq2Seq and is not too
far off the Worldformer especially in terms of F1 score. This would appear to indicate that
the Club Floyd dataset of text game transcripts that CALM was trained on is better suited
for transfer to certain games than others, likely due to differences in training set genre sim-
ilarities. A careful mix of these datasets could potentially lead to greater generalization
performance, though this is left to future work.

Table 3.3 presents an ablation study that tests the two main components of the World-
former for this task: multi-task learning, and SOS loss. As with the KG prediction task,

I observe significant drops in performance when either of these components are taken
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away—suggesting that they are relatively critical components.

There is a correlation between performance of the baseline Seq2Seq model to the av-
erage number of valid actions for the testing game (see Appendix A). This is likely due to
label imbalance in the dataset, the model likely learns a common set of actions found across
all games such as navigation actions before learning more fine-grained actions. E.g., in al-
most every single instance, the standard movement actions (north, south, east, west) are all
predicted regardless of which directional actions are actually available—likely due to all of
them being very commonly available together on average across the training data. Another
example, ztuu, deephome, and balances have a high number of gold standard average valid
actions while pentari, ludicorp, detective, and temple which have a low number of average
valid actions. While the latter set of games have generally higher performance on both
the Seq2Seq and Worldformer models, the gap is significantly less pronounced with the
Worldformer. I hypothesize that this is due to the multi-task training of the Worldformer—
encoder representations now contain enough information regarding the next knowledge
graph to alleviates the label imbalance of the actions and enable prediction of more fine-
grained actions. Again, qualitative samples illustrating these trends may be found in Ap-

pendix A.3.1.

3.4 Conclusions

This chapter presents the Worldformer dataset and corresponding benchmarks that seek
to drive progress in textual world modeling. This primarily involves two key challenges
behind the creation of agents that can understand and generate natural language in a diverse
set of interactive and situated settings such as text games. My dataset provides mappings
from textual observations to ground truth knowledge graph states to enable agents to learn
to infer the state of the world—alleviating the knowledge representation or Textual-SLAM
challenge. A key insight from an comparison of baseline models shows that a promising

future direction lies in inferring the knowledge graph world state through commonsense
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reasoning rather than extracting this information due to the partial observability of text
games.

A second world modeling task revolves around tacking the combinatorially-sized action
space of text games. The dataset also provides mappings from textual observations to valid
actions—i.e. the set of contextually relevant actions guaranteed to change the world in any
state. A qualitative analysis of a state-of-the-art Seq2Seq model adapted to the domain
and trained for this task suggests that while learning to conditionally generate commonly
occurring actions across a large set of games might be relatively easy, learning to generate
specific and contextually relevant actions provides a significantly more difficult challenge.

In particular, the Worldformer’s state-of-the-art performance and the ablation studies
have three potential implications: (1) the simplification of the knowledge representation
problem into that of predicting knowledge graph differences between subsequent states is
a critical step in making the problem more tractable; (2) performance improvements due
to multi-task training imply that acting in and mapping these worlds is inherent a highly
correlated problem and benefits from being solved jointly; and (3) the performance boosts
due to the SOS loss suggest that accounting for this property of graphs and actions enables

more effective training than if we were to treat them as simple sequences.
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CHAPTER 4
SCALING TO COMBINATORIAL LANGUAGE ACTION SPACES

To gain a sense for the challenges surrounding natural language generation, we need to first
understand how large this space really is. In order to solve solve a popular IF game such
as Zorkl it’s necessary to generate actions consisting of up to five-words from a relatively
modest vocabulary of 697 words recognized by Zork’s parser. Even this modestly sized
vocabulary leads to O(697°) = 1.64 x 10'* possible actions at every step—a dauntingly-
large combinatorially-sized action space for a learning agent to explore.

This chapter introduces three novel agents that utilizes both a knowledge graph based
state space and shows how to train such agents—using both off and on policy reinforce-
ment learning. I then conduct an empirical study evaluating my agent across a diverse set
of IF games followed by an ablation analysis studying the effectiveness of various compo-
nents of my algorithm as well as its overall generalizability. Remarkably I show that the
agents achieve state-of-the-art performance on a large proportion of the games despite the

exponential increase in action space size.

4.1 Off Policy: Knowledge Graph Deep Q-Network

This section introduces an off-policy RL algorithm that can train agents to play text games,
the KG-DQN. I use all the same POMDP definitions as previously introduced. Following
Narasimhan et al. (2015), all actions A that will be accepted by the game’s parser are
available to the agent at all times. When playing the game, the agent chooses an action and
receives an observation o; from the simulator, which is a textual description of the current
game state. The state graph G, is updated according to the given observation, as seen in
Figure 4.1 and Chapter 8.

I use the ()-Learning technique (Watkins and Dayan 1992) to learn a control policy
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Figure 4.1: Graph update rules
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Figure 4.2: KG-DQN architecture, blue shading (or the symbol ’B’) indicates components
that can be pre-trained and red (or the symbol "R’) indicates no pre-training. The solid lines
indicate gradient flow for learnable components.
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m(as|ss), a; € A, which gives us the probability of taking action a; given the current state
s¢. The policy is determined by the ()-value of a particular state-action pair, which is

updated using the Bellman equation (Sutton and Barto 2018):

Qt+1(3t+17at+1) =
“4.1)

Elrie +ymax Q¢(s, a)|ss, ail
(ZGAt

where v refers to the discount factor and ;4 is the observed reward. The policy is thus to
take the action that maximizes the ()-value in a particular state, which will correspond to
the action that maximizes the reward expectation given that the agent has taken action a; at

the current state s; and follold the policy 7 (als) after.
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The architecture in Figure 4.2 is responsible for computing the representations for both
the state s, and the actions a'”’ € A and coming to an estimation of the Q-value for a
particular state and action. During the forward activation, the agent uses the observation to
update the graph G using the rules outlined in Section 4.1.1.

The graph is then embedded into a single vector g¢. I use Graph Attention (Veli¢kovic et
al. 2018) with an attention mechanism similar to that described in Bahdanau et al. (2014).
Formally, the Multi-headed Graph Attention component receives a set of node features
H = {h;,h,,...,hn}, h; € IRY, where N is the number of nodes and F' the number of
features in each node, and the adjacency matrix of (G;. Each of the node features consist of
the averaged word embeddings for the tokens in that node, as determined by the preceding
graph embedding layer. The attention mechanism is set up using self-attention on the nodes

after a learnable linear transformation W € IR?"*¥ applied to all the node features:
e;j = LeakyReLU (p - W (h; @ h;)) 4.2)

where p € IR?" is a learnable parameter. The attention coefficients «;; are then computed
by normalizing over the choices of £ € N using the softmax function. Here N\ refers to
the neighborhood in which I compute the attention coefficients. This is determined by the

adjacency matrix for GG; and consists of all third-order neighbors of a particular node.

exp(e;;)

= 4.3
> ke exp(eir) )

Oél‘j

Multi-head attention is then used, calculating multiple independent attention coefficients.

The resulting features are then concatenated and passed into a linear layer to determine g:

ge = f(W,(1E,0 (Y ol WHh)) + b,) (4.4)
JEN

where k refers to the parameters of the k™ independent attention mechanism, W, and b, the
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weights and biases of this component’s output linear layer, and || represents concatenation.
Simultaneously, an encoded representation of the observation o is computed using a

Sliding Bidirectional LSTM (SB-LSTM). The final state representation s; is computed as:

st = f(Wi(ge ® o) + by) 4.5)

where W, b; represent the final linear layer’s weights and biases and oy is the result of
encoding the observation with the SB-LSTM.

The entire set of possible actions A is pruned by scoring each a € A according to the
mechanism previously described using the newly updated G4, . I then embed and encode
all of these action strings using an LSTM encoder (Sutskever et al. 2014). The dashed lines
in Figure 4.2 denotes non-differentiable processes.

The final ()-value for a state-action pair is:

Q(St, at) =S¢ a¢ (4.6)

This method of separately computing the representations for the state and action is similar
to the approach taken in the DRRN (He et al. 2016b).

I train the network using experience replay (Lin 1993) with prioritized sampling (cf.,
Moore and Atkeson (1993)) and a modified version of the e-greedy algorithm (Sutton and
Barto 2018) that I call the €y, e5-greedy learning algorithm. The experience replay strategy
finds paths in the game, which are then stored as transition tuples in a experience replay
buffer D. The ¢, e5-greedy algorithm explores by choosing actions randomly from A with
probability €; and from A; with a probability €,. The second threshold is needed to account
for situations where an action must be chosen to advance the quest for which the agent
has no prior in GG;. That is, action pruning may remove actions essential to quest comple-
tion because those actions involve combinations of entities that have not been encountered

before.

49



I then sample a mini-batch of transition tuples consisting of (s, ay, 7x11, Sk+1, Aki1, Pk)

from D and compute the temporal difference loss as:

L(0) = Tpy1 + Vagax Q(s¢,a;0) — Q(s¢, ag; 0) 4.7)

k+1

Replay sampling from D is done by sampling a fraction p from transition tuples with a
positive reward and 1 — p from the rest. As shown in Narasimhan et al. (2015), prioritized
sampling from experiences with a positive reward helps the deep ()-network more easily
find the sparse set of transitions that advance the game. The exact training mechanism is

described in Algorithm 1.

4.1.1 Action Pruning

The number of actions available to an agent in a text adventure game can be quite large:
A = O(|V| x |O|*) where V is the number of action verbs, and O is the number of distinct
objects in the world that the agent can interact with, assuming that verbs can take two
arguments. Some actions, such as movement, inspecting inventory, or observing the room,
do not have arguments.

The knowledge graph is used to prune the combinatorially large space of possible ac-
tions available to the agent as follows. Given the current state graph representation G, the
action space is pruned by ranking the full set of actions and selecting the top-k. My action

scoring function is:
e +1 for each object in the action that is present in the graph; and
e +1 if there exists a valid directed path between the two objects in the graph.

I assume that each action has at most two objects (for example inserting a key in a lock).
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Algorithm 2 ¢, e5-greedy learning algorithm for KG-DQN

1
2
3
4.
5:
6.
7
8

9:

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:

22:
23:

: for episode=1 to M do

Initialize action dictionary A and graph G

Reset the game simulator

Read initial observation oq

G1 < updateGraph(Gy, 01); Ay < pruneActions(A, Go) > Section 4.1.1
for step t=1to 1" do

if random() < €; then
if random() < e then
Select random action a; € A
else
Select random action a; € A;
else
Compute Q(s¢,alV); 9) for a?) € A for network parameters 6 > Section 4.1, Eq. 4.6
Select a; based on 7(als;)

Execute action a; in the simulator and observe reward r;

Receive next observation ot + 1

Giq1 < updateGraph(Gy, op41); Ary1 + pruneActions(A, Giy1) > Figure 4.1
Compute s¢ 1 and Agyq = {a’®) forall o/) € A} > Section 4.1
Set priority p; = 1if r; > 0,else p, =0

Store transition (S¢, at, ¢, St+1, At+1, Pe) in replay buffer D

Sample mini-batch of transitions (s, ax, 7', Sk+1, Ax+1, Px) from D, with fraction p having

Set yp = i + Y MaXaca, ., Q(s¢,a;0), or yp = 7y if 541 is terminal
Perform gradient descent step on loss function L(0) = (yx — Q(s¢, at;0))?

4.1.2 Benefits of a Persistent Memory

I conducted experiments in the TextWorld framework (Coté et al. 2018) using their “home”

theme. TextWorld uses a grammar to randomly generate game worlds and quests with

given parameters. Games generated with TextWorld start with a zero-th observation that

gives instructions for the quest; I do not allow my agent to access this information. The

TextWorld API also provides a list of admissible actions at each state—the actions that can

Table 4.1: Generated game details.

Small Large

Rooms 10 20
Total objects 20 40
Quest length 5 10
Branching factor 143 562
Vocab size 746 819
Average words per obs. 67.5 94.0

Average new RDF triples per obs. 7.2 10.5
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be performed based on the objects that are present. I do not allow my agent to access the
admissible actions.

I generated two sets of games with different random seeds, representing different game
difficulties, which I denote as small and large. Small games have ten rooms and quests
of length five and large games have tInty rooms and quests of length ten. Statistics on the
games are given in Table 4.1. Quest length refers to the number of actions that the agent
is required to perform in order to finish the quest; more actions are typically necessary to
move around the environment and find the objects that need to be interacted with. The
branching factor is the size of the action set A for that particular game.

The reward function provided by TextWorld is as follows: +1 for each action taken
that moves the agent closer to finishing the quest; -1 for each action taken that extends the
minimum number of steps needed to finish the quest from the current stage; O for all other
situations. The maximum achievable reward for the small and large sets of games are 5 and
10 respectively. This allows for a large amount of variance in quest quality—as measured
by steps to complete the quest—that receives maximum reward.

The following procedure for pre-training was done separately for each set of games.
Pre-training of the SB-LSTM within the question-answering architecture is conducted by
generating 200 games from the same TextWorld theme. The QA system was then trained
on data from walkthroughs of a randomly-chosen subset of 160 of these generated games,
tuned on a dev set of 20 games, and evaluated on the held-out set of 20 games. Table 4.2
provides details on the Exact Match (EM), precision, recall, and F1 scores of the QA system
after training for the small and large sets of games. Precision, recall, and F1 scores are
calculated by counting the number of tokens between the predicted answer and ground
truth. An Exact Match is when the entire predicted answer matches with the ground truth.
This score is used to tune the model based on the dev set of games.

A random game was chosen from the test-set of games and used as the environment for

the agent to train its deep ()-network on. Thus, at no time did the QA system see the final
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Table 4.2: Pre-training accuracy.

EM Precision Recall F1
Small 46.20 56.57 63.38 57.94
Large 34.13 52.53 64.72  55.06

testing game prior to the training of the KG-DQN network.

I compare my technique to three baselines:

Random command. This baseline samples from the list of admissible actions returned
by the TextWorld simulator at each step.

LSTM-DQN. This was developed by Narasimhan et al. (2015).

Bag-of-Words DQN. This baseline uses a bag-of-words encoding with a multi-layer
feed forward network instead of an LSTM.

To achieve the most competitive baselines, I used a randomized grid search to choose
the best hyperparameters (e.g., hidden state size, vy, p, final €, update frequency, learning
rate, replay buffer size) for the BOW-DQN and LSTM-DQN baselines.

I tested three versions of my KG-DQN:

1. Un-pruned actions with pre-training

2. Pruned actions without pre-training

3. Pruned actions with pre-training (full)

My models use 50-dimensional word embeddings, 2 heads on the graph attention layers,
mini-batch size of 16, and perform a gradient descent update every 5 steps taken by the
agent.

All models are evaluated by observing the (a) time to reward convergence, and (b) the
average number of steps required for the agent to finish the game with ¢ = 0.1 over 5
episodes after training has completed. Following Narasimhan et al. (2015) I set € to a
non-zero value because text adventure games, by nature, require exploration to complete

the quests. All results are reported based on multiple independent trials. For the large set
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of games, I only perform experiments on the best performing models found in the small
set of games. Also note that for experiments on large games, I do not display the entire
learning curve for the LSTM-DQN baseline, as it converges significantly more slowly than
KG-DQN. I ran each experiment 5 times and average the results.

Additionally, human performance on the both the games was measured by counting
the number of steps taken to finish the game, with and without instructions on the exact
quest. I modified Textworld to give the human players reward feedback in the form of
a score, the reward function itself is identical to that received by the deep reinforcement
learning agents. In one variation of this experiment, the human was given instructions on
the potential sequence of steps that are required to finish the game in addition to the reward
in the form of a score and in the other variation, the human received no instructions.

Recall that the number of steps required to finish the game for the oracle agent is 5
and 10 for the small and large maps respectively. It is impossible to achieve this ideal
performance due to the structure of the quest. The player needs to interact with objects
and explore the environment in order to figure out the exact sequence of actions required to
finish the quest. To help benchmark my agent’s performance, I observed people unaffiliated
with the research playing through the same TextWorld “home” quests as the other models.
Those who did not receive instructions on how to finish the quest never finished a single
quest and gave up after an average of 184 steps on the small map and an average of 190
steps on the large map. When given instructions, human players completed the quest on the
large map in an average of 23 steps, finishing the game with the maximum reward possible.
Also note that none of the deep reinforcement learning agents received instructions.

On both small and large maps, all versions of KG-DQN tested converge faster than
baselines (see Figure 4.3 for the small game and Figure 4.4 for the large game). I don’t
show BOW-DQN because it is strictly inferior to LSTM-DQN in all situations). KG-DQN
converges 40% faster than baseline on the small game; both KG-DQN and the LSTM-DQN

baseline reaches the maximum reward of five. On the large game, no agents achieve the
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Figure 4.3: Reward learning curve for select experiments with the small games. Best vield
in color.

Table 4.3: Average number of steps (and standard deviation) taken to complete the small
game.

Model Steps
Random Command 319.8
BOW-DQN 83.1 +8.0
LSTM-DQN 72.4+4.6

Unpruned, pre-trained KG-DQN 131.7£7.7
Pruned, non-pre-trained KG-DQN  97.3 £ 9.0
Full KG-DQN 73.7 £ 8.5

maximum reward of 10, and the LSTM-DQN requires more than 300 episodes to converge
at the same level as KG-DQN. Since all versions of KG-DQN converge at approximately
the same rate, I conclude that the knowledge graph—i.e., persistent memory—is the main
factor helping convergence time since it is the common element across all experiments.
After training is complete, I measure the number of steps each agent needs to com-
plete each quest. Full KG-DQN requires an equivalent number of steps in the small game
(Table 4.3) and in the large game (Table 4.4). Differences between LSTM-DQN and full
KG-DQN are not statistically significant, p = 0.199 on an independent T-test. The ablated

versions of KG-DQN—unpruned KG-DQN and non-pre-trained KG-DQN—require many
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Figure 4.4: Reward learning curve for select experiments with the large games. Best vield
in color.

Table 4.4: Average number of steps (and standard deviation) taken to complete the large
game.

Model Steps
Random Command 2054.8
LSTM-DQN 260.3 £4.5
Pruned, non-pre-trained KG-DQN 340 + 6.4
Full KG-DQN 2659 +£94

more steps to complete quests. TextWorld’s reward function allows for a lot of exploration
of the environment without penalty so it is possible for a model that has converged on re-
ward to complete quests in as few as five steps or in many hundreds of steps. From these
results, I conclude that the pre-training using my question-answering paradigm is allow-
ing the agent to find a general understanding of how to pick good actions even when the
agent has never seen the final test game. LSTM-DQN also learns how to choose actions
efficiently, but this knowledge is captured in the LSTM’s cell state, whereas in KG-DQN
this knowledge is made explicit in the knowledge graph and retrieved effectively by graph
attention. Taken together, KG-DQN converges faster without loss of quest solution quality.

I have shown that incorporating knowledge graphs into an deep ()-network can reduce
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training time for agents playing text-adventure games of various lengths. I speculate that
this is because the knowledge graph provides a persistent memory of the world as it is
being explored. While the knowledge graph allows the agent to reach optimal reward
more quickly, it doesn’t ensure a high quality solution to quests. Action pruning using the
knowledge graph and pre-training of the embeddings used in the deep ()-network result in
shorter action sequences needed to complete quests.

The insight into pre-training portions of the agent’s architecture is based on converting
text-adventure game playing into a question-answering activity. That is, at every step, the
agent is asking—and trying to answer—what is the most important thing to try. The pre-
training acts as a form of transfer learning from different, but related games. However,
question-answering alone cannot solve the text-adventure playing problem because there

will always be some trial and error required.

4.2 On Policy: Knowledge Graph Advantage Actor Critic

Combining the knowledge-graph state space with a template action space, Knowledge
Graph Advantage Actor Critic or KG-A2C, is an on-policy reinforcement learning agent
that collects experience from many parallel environments. I first discuss the architecture of
KG-A2C, then detail the training algorithm. As seen in Fig. 4.5, KG-A2C’s architecture
can broadly be described in terms of encoding a state representation and then using this
encoded representation to decode an action. I describe each of these processes below.
Template Action Space. In order to reduce the size of this space while maintaining
expressiveness, Jericho proposes the use of template-actions in which the agent first selects
a template (e.g. [put] _ [in]_) then fills in the blanks using vocabulary words. There are
237 templates in Zorkl, each with up to two blanks, yielding a template-action space of
size O(237 x 697?) = 1.15 x 10®. This space is six orders of magnitude smaller than the
word-based space, but still six orders of magnitude larger than the action spaces used by

previous text-based agents (Zahavy et al. 2018; Narasimhan et al. 2015). I demonstrate
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how these templates provide the structure required to further constrain my action space via
my knowledge graph—and make the argument that the combination of these approaches
allows us to generate meaningful natural language commands.

Templates are subroutines used by the game’s parser to interpret the player’s action.
They consist of interchangeable verbs phrases (V' P) optionally followed by prepositional
phrases (VP PP), e.g. ([carry/hold/take] _) and ([drop/throw/discard/put] __ [at/again-
st/onfonto] _), where the verbs and prepositions within [.] are aliases. As shown in Figure
4.6, actions may be constructed from templates by filling in the template’s blanks using
words in the game’s vocabulary. Templates and vocabulary words are programmatically
accessible through the Jericho framework and are thus available for every IF game.

Input Representation. The input representation network is broadly divided into three
parts: an observation encoder, a score encoder, and the knowledge graph. At every step an
observation consisting of several components is received: o; = (oy,,__, Ot yame > Otino ai—1)
corresponding to the room description, game feedback, inventory, and previous action, and
total score I?;. The room description oy, _ is a textual description of the agent’s location,
obtained by executing the command “look.” The game feedback oy,,,,. is the simulators
response to the agent’s previous action and consists of narrative and flavor text. The inven-

tory o, and previous action a,_; components inform the agent about the contents of its

inventory and the last action taken respectively.

The observation encoder processes each component of o; using a separate GRU en-
coder. As I am not given the vocabulary that o, is comprised of, I use subword tokenization—
specifically using the unigram subword tokenization method described in Kudo (2018).
This method predicts the most likely sequence of subword tokens for a given input using a
unigram language model which, in my case, is trained on a dataset of human playthroughs

of IF games' and contains a total vocabulary of size 8000. For each of the GRUs, I pass

in the final hidden state of the GRU at step ¢ — 1 to initialize the hidden state at step ¢. I

Thttp://www.allthingsjacq.com/interactive fiction.html#clubfloyd
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Figure 4.5: The full KG-A2C architecture. Solid lines represent computation flow along
which the gradient can be back-propagated.

concatenate each of the encoded components and use a linear layer to combine them into
the final encoded observation o;.

At each step, I update my knowledge graph G; using o; and it is then embedded into
a single vector g as described in Chapter 3. I again use Graph Attention networks or
GATs (Velickovié er al. 2018) with an attention mechanism similar to that described in
Bahdanau et al. (2014). Node features are computed as H = {hy, hs,... hx}, h; € RF,
where N is the number of nodes and ' the number of features in each node, consist of
the average subword embeddings of the entity and of the relations for all incoming edges
using my unigram language model. Self-attention is then used after a learnable linear
transformation W € IR**¥" applied to all the node features. Attention coefficients «;; are

then computed by softmaxing & € N with N being the neighborhood in which I compute

59



the attention coefficients and consists of all edges in G;.

e;j = LeakyReLU (p - W(h; @ hy)) 4.8)
exp(e;;)
;= 4.9)
T e eap(er)

where p € IR?" is a learnable parameter.

exp(e;j)
Q5 = (4.10)
T Ykew explei)
The final knowledge graph embedding vector g; is computed as:
K
g = f(Wy( @ oD af Whhy) + b)) (@.11)
k=1 jeN

where k refers to the parameters of the k' independent attention mechanism, W, and b, the
weights and biases of the output linear layer, and €p represents concatenation. The final
component of state embedding vector is a binary encoding c; of the total score obtained
so far in the game—giving the agent a sense for how far it has progressed in the game
even when it is not collecting reward. The state embedding vector is then calculated as
St = 8t D 0 D 4.

Action Decoder. The state embedding vector s is then used to sequentially construct
an action by first predicting a template and then picking the objects to fill into the template
using a series of Decoder GRUs. This gives rise to a template policy 71 and a policy for
each object mp,. Architecture wise, at every decoding step all previously predicted parts of
the action are encoded and passed along with s; through an attention layer which learns to
attend over these representations—conditioning every predicted object on all the previously
predicted objects and template. All the object decoder GRUs share parameters while the
template decoder GRU remains separate.

To effectively constrain the space of template-actions, I introduce the concept of a graph
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Figure 4.6: Visualization of the action decoding process using templates and objects. Ob-
jects consist of the entire game input vocabulary. Greyed out words indicate objects masked
out by the knowledge graph.

mask, leveraging my knowledge graph at that timestep G, to streamline the object decoding
process. Formally, the graph mask m; = {0 : 0o € Gy A o € V'}, consists of all the entities
found within the knowledge graph G; and vocabulary V' and is applied to the outputs of the
object decoder GRUs—restricting them to predict objects in the mask. Generally, in an IF
game, it is impossible to interact with an object that you never seen or that are not in your
inventory and so the mask lets us explore the action space more efficiently. To account for
cases where this assumption does not hold, i.e. when an object that the agent has never
interacted with before must be referenced in order to progress in the game, I randomly add
objects o € V' to m; with a probability p,,. An example of the graph-constrained action

decoding process is illustrated in Fig. 4.6.
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4.2.1 Training

I adapt the Advantage Actor Critic (A2C) method (Mnih et al. 2016) to train my network,
using multiple workers to gather experiences from the simulator, making several significant
changes along the way—as described below.

Valid Actions. Using a template-action space there are millions of possible actions at
each step. Most of these actions do not make sense, are ungrammatical, etc. and an even
fewer number of them actually cause the agent effect change in the world. Without any
sense for which actions present valid interactions with the world, the combinatorial action
space becomes prohibitively large for effective exploration.

I thus use the concept of valid actions, actions that can change the world in a par-
ticular state. These actions can usually be recognized through the game feedback, with
responses like “Nothing happens” or “That phrase is not recognized.” In practice, I fol-
low Hausknecht et al. (2020) and use the valid action detection algorithm provided by Jeri-
cho. Formally, Valid(s;) = {ao, ai...a N} and from this I can construct the corresponding
set of valid templates T,aia(s:) = {7’0,7'1...71\;}. I further define a set of valid objects
Ovatia(st) = {oo, 01...0M} which consists of all objects in the graph mask as defined in
Sec. 4.2. This lets us introduce two cross-entropy loss terms to aid the action decoding pro-
cess. The template loss given a particular state and current network parameters is applied
to the decoder GRU 7. Similarly, the object loss is applied across the decoder GRUy, and is

calculated by summing cross-entropy loss from all the object decoding steps.

N
> (yrlogmr(milse) + (1 — yr,) (1 — logme(7ilsy)) (4.12)

i=1

»C']T(Staat;et) =

==

n M
Lo(se, a430;) = Z Zyogogw@ (0i]3¢) + (1 — Yo, ) (1 — logma, (0i]5)))  (4.13)
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1 7 € Toatia(st) 1 0; € Oyatia(st)
yTz‘ = yoi ==
0 else 0 else

Updates. A2C training starts with calculating the advantage of taking an action in a
state A(s, a;), defined as the value of taking an action Q)(s;, a;) compared to the average

value of taking all possible valid actions in that state V' (s;):

A(st,ar) = Q(se,ar) — V(sy) 4.14)

Q(st, ar) = Elry + vV (s¢41)] (4.15)

V (s;) is predicted by the critic as shown in Fig. 4.5 and r; is the reward received at step t.

The action decoder or actor is then updated according to the gradient:
—Vo(logmr(7|se; 0:) + Z logmo, (0i]St, T, ..., 0i—1;60¢) ) A(St, ar) (4.16)
i=1

updating the template policy 7r and object policies 7, based on the fact that each step
in the action decoding process is conditioned on all the previously decoded portions. The

critic is updated with respect to the gradient:
1 2
§V0(Q(St, ag; 0y) — V(si;01)) 4.17)

bringing the critic’s prediction of the value of being in a state closer to its true underlying
value. I further add an entropy loss over the valid actions, designed to prevent the agent

from prematurely converging on a trajectory.

Lr(st, a3 6;) = Z P(a|s;)logP(als:) (4.18)
a€V (st)
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4.2.2 Graph Ablations

The KG-A2C is tested on a suite of Jericho supported games and is compared to strong,
established baselines. Additionally, as encouraged by Hausknecht er al. (2020), I present
the set of handicaps used by my agents: (1) Jericho’s ability to identify valid actions and
(2) the Load, Save handicap in order to acquire o, and oy, using the look and inventory
commands without changing the game state.

Template DQN Baseline. I compare KG-A2C against Template-DQN, a strong base-
line also utilizing the template based action space. TDQN (Hausknecht et al. 2020) is an
extension of LSTM-DQN (Narasimhan et al. 2015) to template-based action spaces. This
is accomplished using three output heads: one for estimating the Q-Values over templates
Q(s¢,u)Vu € T and two for estimating Q-Values Q(s¢, 01), Q(sq, 02)Vo; € O over vocabu-
lary to fill in the blanks of the template. The final executed action is constructed by greedily
sampling from the predicted Q-values. Importantly, TDQN uses the same set of handicaps
as KG-A2C allowing a fair comparison between these two algorithms.

Table 4.5 shows how KG-A2C fares across a diverse set of games supported by Jericho—
testing the agent’s ability to generalize to different genres, game structures, reward func-
tions, and state-action spaces. KG-A2C matches or outperforms TDQN on 23 out of the
28 games that I test on. My agent is thus shown to be capable of extracting a knowledge
graph that can sufficiently constrain the template based action space to enable effective
exploration in a broad range of games.

In order to understand the contributions of different components of KG-A2C’s archi-
tecture, I ablate KG-A2C’s knowledge graph, template-action space, and valid-action loss.
These ablations are performed on Zorkl? and result in the following agents:

A2C. removes all components of KG-A2C’s knowledge graph. In particular, the state

embedding vector is now computed as sy = oy P c¢ and the graph mask is not used to

2 A map of Zork1 with annotated rewards can be found in Appendix B along with a transcript of KG-A2C
playing this game.
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Table 4.5: Raw scores comparing KG-A2C (both with and without the mask) to TDQN
across a wide set of games supported by Jericho. TAdvent starts at a score of 36.

Game | |T| |V| | TDQN KGA2C KGA2C-unmasked | MaxRew
905 | 82 296 |0 0 0 1
acorncourt | 151 343 | 1.6 0.3 0.3 30
advent’ | 189 786 | 36 36 36 350
adventureland | 156 398 | O 0 0 100
anchor | 260 2257 | 0 0 0 100
awaken | 159 505 |0 0 0 50
balances | 156 452 | 4.8 10 10 51
deephome | 173 760 | 1 1 29.2 300
detective | 197 344 | 169 207.9 141 360
dragon | 177 1049 | -5.3 0 -2 25
enchanter | 290 722 | 8.6 12.1 7.6 400
inhumane | 141 409 | 0.7 3 10.2 300
jell | 161 657 | O 1.8 1.3 90
karn | 161 657 | 1.2 0 0 90
library | 173 510 | 6.3 14.3 9.6 30
ludicorp | 187 503 | 6 17.8 17.9 150
moonlit | 166 669 | 0 0 0 1
omniquest | 207 460 | 16.8 3 5.4 50
pentari | 155 472 | 174 50.7 50.4 70
snacktime | 201 468 | 9.7 0 0 50
sorcerer | 288 1013 | 5 5.8 16.8 400
spellbrkr | 333 844 | 18.7 21.3 30.1 600
spirit | 169 1112 | 0.6 1.3 1.3 250
temple | 175 622 | 7.9 7.6 6.4 35
zenon | 149 401 | O 3.9 3.1 350
zorkl | 237 697 | 9.9 34 27 350
zork3 | 214 564 | 0 A 1 7
ztuu | 186 607 | 4.9 9.2 5 100

65



constrain action decoding.

KG-A2C-no-gat. remove’s the Graph Attention network, but retains the graph masking
components. The knowledge graph is still constructed as usual but the agent uses the same
state embedding vector as A2C.

KG-A2C-no-mask. ablates the graph mask for purposes of action decoding. The
knowledge graph is constructed as usual and the agent retains graph attention.

On Zorkl as shown in Figure 4.7, I observe similar asymptotic performance between
the all of the ablations — all reach approximately 34 points. This level of performance
corresponds to a local optima where the agent collects the majority of available rewards
without fighting the troll. Several other authors also report scores at this threshold (Zahavy
et al. 2018; Jain et al. 2019). In terms of learning speed, the methods which have access to
either the graph attention or the graph mask converge slightly faster than pure A2C which
has neither.

To further understand these differences I performed a larger study across the full set
of games comparing KG-A2C-full with KG-A2C-no-mask. The results in Table 4.5 show
KG-A2C-full outperforms KG-A2C-no-mask on 10 games and is outperformed by KG-
A2C-no-mask on 6. From this larger study I thus conclude the graph mask and knowledge
graph are broadly useful components.

I perform two final ablations to study the importance of the supervised valid-action loss
and the template action space:

KG-A2C-unsupervised. In order to understand the importance of training with valid-
actions, KG-A2C-unsupervised is not allowed to access the list of valid actions—the valid-
action-losses L1 and L are disabled and L£r now based on the full action set. Thus,
the agent must explore the template action space manually. KG-A2C-unsupervised, when
trained for the same number of steps as all the other agents, fails to achieve any score. I can
infer that the valid action auxiliary loss remains an important part of the overall algorithm,

and access to the knowledge graph alone is not yet sufficient for removing this auxiliary
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Figure 4.7: Ablation results on Zorkl, averaged across 5 independent runs.

loss.
KG-A2C-seq. discards the template action space and instead decodes actions word
by word up to a maximum of four words. A supervised cross-entropy-based valid action

loss Lyyiiq is now calculated by selecting a random valid action a,_, € Valid(s;) and using

vlid
each token in it as a target label. As this action space is orders of magnitude larger than
template actions, I use teacher-forcing to enable more effective exploration while training
the agent—executing a,,,,, with a probability py,iq = 0.5 and the decoded action otherwise.
All other components remain the same as in the full KG-A2C.

KG-A2C-seq reaches a relatively low asymptotic performance of 8 points. This agent,
using a action space consisting of the full vocabulary, performs significantly worse than
the rest of the agents even when given the handicaps of teacher forcing and being allowed

to train for significantly longer—indicating that the template based action space is also

necessary for effective exploration.

4.3 On Policy: Q*BERT

Q*BERT is a also a reinforcement learning agent that uses a knowledge-graph to repre-
sent its understanding of the world state. Instead of using relation extraction rules as in

KG-A2C, Q*BERT uses a variant of the BERT (Devlin ef al. 2019) natural language trans-

67



former to answer questions and populate the knowledge graph from the answers.

Knowledge Graph State Representation I treat the problem of constructing the knowl-
edge graph as a question-answering task. My method first extracts a set of graph vertices V
by asking a question-answering system relevant questions and then linking them together
using a set of relations R to form a knowledge graph representing information the agent
has learned about the world. Examples of questions include: “What is my current loca-
tion?”, “What objects are around me?”, and “What am I carrying?” to respectively extract
information regarding the agent’s current location, surrounding objects, inventory objects.
Further, I predict attributes for each object by asking the question “What attributes does z
object have?”. An example of the knowledge graph that can be extracted from description
text and the overall Q*BERT architecture are shown in Figure 4.8.

For question-answering, I use the pre-trained language model, ALBERT (Lan et al.
2020), a variant of BERT that is fine-tuned for question answering on the SQuAD 2.0 (Ra-
jpurkar et al. 2018) question-answering dataset. I further fine-tune the ALBERT model on

a dataset specific to the text-game domain, dubbed Jericho-QA.

4.3.1 Jericho-QA Dataset

The Jericho-QA dataset was created by making question answering pairs about text-games
in the Jericho (Hausknecht et al. 2020)° framework as follows: For each game in Jericho, 1
use an oracle—an agent capable of playing the game perfectly using information normally
off-limits such as the true game state—and a random exploration agent to gather ground
truth state information about locations, objects, and attributes. From this ground truth, I
construct pairs of questions in the form that Q*BERT will ask as it encounters environment
description text, and the corresponding answers. These question-answer pairs are used to
fine-tune the Q/A model and the ground truth data are discarded. No data from games I test

Q*BERT on are used during ALBERT fine-tuning.

3https://github.com/microsoft/jericho
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Figure 4.8: One-step knowledge graph extraction in the Jericho-QA format, and overall
Q*BERT architecture at time step t. At each step the ALBERT-QA model extracts a rel-
evant highlighted entity set V; by answering questions based on the observation, which is
used to update the knowledge graph.

Questions for QA were chosen on the basis of what past works in the area determined to
be useful state information for the agent. For example, KG-A2C and GATA (Adhikari et al.
2020) explicitly differentiate between inventory/location descriptions/surrounding objects.
The answers are annotated using information in the underlying world object tree that every
text game is built on, this information can be accessed through the engine but, importantly,
is used for annotation in the Jericho-QA dataset only. Jericho-QA data is formatted in the
style of SQuAD 2.0 (Rajpurkar et al. 2018) and given samples of which questions are not
applicable to certain states, i.e. negative samples.

Jericho-QA contains 221453 Question-Answer pairs in the training set and 56667 pairs
in the held out test set. The test set consists of all the games that I test on in this chapter.
The set of attributes for a game is taken directly from the game engine and is defined by
the game developer.

A single sample looks like this:

Context:
[loc] Chief’s Office You are standing in the chief’s office. He is telling you, "The mayor

was murdered yesterday night at 12:03 am. I want you to solve it before I get any bad
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publicity or the FBI has to come in." "Yessir!" you reply. He hands you a sheet of
paper. once you have read it, go north or west. You can see a piece of white paper
here.

[inv] You are carrying nothing.

[obs] [your score has Jjust gone up by ten points.]

[atr] talkable, seen, lieable, enterable, nodwarf, indoors, visited, handed, lockable,
surface, thing, water_room, unlock, lost, afflicted, is_treasure, converse, mentioned,
male, npcworn, no_article, relevant, scored, queryable, town, pluggable, happy,
is_followable, legible, multitude, burning, room, clothing, underneath, ward_area ,
little, intact, animate, bled_in, supporter, readable, openable, near, nonlocal, door,
plugged, sittable, toolbit, vehicle, light, lens_searchable, open, familiar,
is_scroll, aimable, takeable, static, unique, concealed, vowelstart, alcoholic,
bodypart, general, is_spell, full, dry_land, pushable, known, proper, inside, clean,
ambiguously_plural, container, edible, treasure, can_plug, weapon, is_arrow,
insubstantial, pluralname, transparent, is_coin, air_room, scenery, on, is_spell_book,
burnt, burnable, auto_searched, locked, switchable, absent, rockable, beenunlocked,
progressing, severed, worn, windy, stone, random, neuter, legible, female, asleep,
wiped

Question: Where am I located? Answer: chief’s office

Question: What is here? Answer: paper, west

Question: What do I have? Answer: nothing

Question: What attributes does paper have? Answer: legible, animate

Question: What attributes does west have? Answer: room, animate

4.3.2 Q*BERT Training

In a text-game the observation is a textual description of the environment. For every ob-
servation received, Q*BERT produces a fixed set of questions. The questions and the ob-
servation text are sent to the question-answering system. Predicted answers are converted
into (s, r, o) triples and added to the knowledge graph. The complete knowledge graph is
the input into Q*BERT’s neural architecture (described below), which makes a prediction
of the next action to take. At every step an observation consisting of several components
is received: o, = (oy,,.., Ot yame > Otino a¢—1) corresponding to the room description, game
feedback, inventory, and previous action, and total score I?;. The room description o,,___ is
a textual description of the agent’s location, obtained by executing the command “look”.

The game feedback oy,,,,,. is the simulators response to the agent’s previous action and con-
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sists of narrative and flavor text. The inventory o, , and previous action a;_; components
inform the agent about the contents of its inventory and the last action taken respectively.
Each of these components is processed using a GRU based encoder utilizing the hidden
state from the previous step and combined to have a single observation embedding o;. At
each step, [ update my knowledge graph G, using o; as described in earlier in Section 4.3
and it is then embedded into a single vector g;. This encoding is based on the R-GCN and

is calculated as:

1
g =f <Wg0 <Z > - W, Oh," +W0(l)hi(”) +bg> (4.19)

reR jeEN;”

Where R is the set of relations, ;" is the 1-step neighborhood of a vertex i with respect
to relation r, W, and hj(l) are the learnable convolutional filter weights with respect to
relation r and hidden state of a vertex j in the last layer [ of the R-GCN respectively, c; ,
is a normalization constant, and W, and b, the weights and biases of the output linear
layer. The full architecture can be found in Fig. 4.8. The state representation consists only
of the textual observations and knowledge graph. Another key use of the knowledge graph,
introduced as part of KG-A2C and described previously, is the graph mask, which restricts
the possible set of entities that can be predicted to fill into the action templates at every step
to those found in the agent’s knowledge graph.

A2C training starts with calculating the advantage of taking an action in a state A(s;, a;),
defined as the value of taking an action ()(s;, a;) compared to the average value of taking

all possible admissible actions in that state V' (s;):

A(sy,ar) = Q(se,a0) — V(si) (4.20)

Q(st,a:) = Elry + 9V (5141)] 4.21)

The value is predicted by the critic as shown in Fig. 4.8 and r; is the reward received at step

t.
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The action decoder or actor is then updated according to the gradient:

—Vo(logmr(7|se; 0:) + Z logmo, (0i]St, T, ..., 0i—1; 60¢) ) A(Se, ar) (4.22)

=1

updating the template policy 7t and object policies 7, based on the fact that each step
in the action decoding process is conditioned on all the previously decoded portions. The

critic is updated with respect to the gradient:
1 2
ive(Q(St, ag; 0y) — V(si;01)) (4.23)

bringing the critic’s prediction of the value of being in a state closer to its true underlying

value. An entropy loss is also added:

Le(si,a:0) = D Plalsi)logP(alst) (4.24)

a€V (st)

4.3.3 Graph Evaluation

I evaluate the quality of the knowledge graph construction in a supervised setting. Next
I perform an end-to-end evaluation in which knowledge graph construction is used by
Q*BERT.

Table 4.7 shows the QA performance, and consequently the accuracy of the knowledge
graphs built during exploration, on the Jericho-QA dataset using the rules-based approach
of KG-A2C and the trained Albert-QA model in Q*BERT. Exact match (EM) is the per-
centage of times the model was able to predict the exact answer string, while F1 measures
token overlap between prediction and ground truth. I observe a direct correlation between
the quality of the extracted graph and an agent’s performance on the games—Q*BERT in
general possessing knowledge graphs of much higher quality than KG-A2C. On games

where Q*BERT performed comparatively better than KG-A2C in terms of asymptotic
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Table 4.6: Ground truth knowledge graph experiment results.

Expt. Q*BERT MC!Q*BERT
Game Reward v v
Intrinsic Motive v
Metric Eps. | Max Max
zork1 34.5 35 42
library 4.5 18 19
detective 246.1 288 338
balances 10 10 10
pentari 52.7 56 58
ztuu 5 5 12
ludicorp 18 19 23
deephome 1 1 6
temple 8 8 8

scores (columns 7 and 9), e.g. detective, the QA model had relatively high EM and F1,
and vice versa as seen with zfuu. In general Q*BERT reaches comparable asymptotic
performance to KG-A2C on 7 out of 9 games. However, as illustrated on zorkl in Fig-
ure 4.9, Q*BERT reaches asymptotic performance faster than KG-A2C, indicating that the
QA model improves learning; this trend is consistent on other games as shown in addi-
tional plots in Appendix B.2. Both agents rely on the graph to constrain the action space
and provide a richer input state representation. Q*BERT uses a QA model fine-tuned on
regularities of a text-game producing more relevant knowledge graphs than those extracted
by OpenlE (Angeli ef al. 2015) in KG-A2C for this purpose.

Further, in Table 4.6, I present results for the agents when given the ground truth knowl-
edge graphs directly from the game engine. I see marginally greater performance across the
board when compared to agents using constructed knowledge graphs (seen in Table 4.7).
Q*BERT, when given a ground truth knowledge graph, shows matching or higher perfor-
mance on 8 out of 9 games—with the sole exception being library.

Reinforcement learning offers an intuitive paradigm for exploring goal driven, con-
textually aware natural language generation. The sheer size of the natural language action
space, However, has proven to be out of the reach of existing algorithms. In this chapter I in-
troduced KG-DQN, KG-A2C, and Q*BERT—novel learning agents that demonstrates the

feasibility of scaling reinforcement learning towards natural language actions spaces with

73



Table 4.7: QA results (EM and F1) on Jericho-QA test set and averaged asymptotic scores
on games by different methods across 5 independent runs. For KG-A2C and Q*BERT,
I present scores averaged across the final 100 episodes as well as max scores. Methods
using exploration strategies show only max scores because Episode Average Score (Eps.)
conflates forward progress and backtracking. Agents are allowed 10° steps for each parallel
A2C agent with a batch size of 16.

Expt. QA Graph accuracy Game reward

Agent KG-A2C Q*BERT KG-A2C Q*BERT

Metric EM F1 EM F1 Eps. | Max | Eps. | Max
zork1 6.08 | 8.42 | 43.93 | 48.31 34 35| 34.1 35
library 10.33 | 26.74 | 49.78 | 52.76 14.3 19 10.0 18

detective 7.51 | 10.23 | 60.28 | 63.21 | 207.9 | 214 | 246.1 | 274
balances 32.53 | 36.09 | 85.81 | 86.18 10 10 10 10
pentari 16.48 | 23.36 | 65.02 | 69.54 | 50.7 56 | 512 56

ztuu 14.40 | 21.74 | 49.44 | 49.82 6 9 5 5
ludicorp 14.47 | 1848 | 57.58 | 60.95 17.8 19 18 19
deephome 3.34 3.86 9.31 9.84 1 1 1 1
temple 7.42 9.44 | 4898 | 49.17 7.6 8 79 8
zorkl
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Figure 4.9: Episode rewards for KG-A2C and Q*BERT.

Figure 4.10: Select ablation results on Zorkl conducted across 5 independent runs per
experiment.
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hundreds of millions of actions. The key insight to being able to efficiently explore such
large spaces is the combination of a knowledge-graph-based state space and a template-
based action space. The knowledge graph serves as a means for the agent to understand
its surroundings, accumulate information about the game, and disambiguate similar tex-
tual observations while the template-based action space lends a measure of structure that
enables us to exploit that same knowledge graph for language generation. Together they
constrain the vast space of possible actions into the compact space of sensible ones. A
suite of experiments across a diverse set of 28 human-made IF games shows wide improve-
ment over TDQN, the current state-of-the-art template-based agent. Finally, an ablation
study replicates state-of-the-art performance on Zorkl even though Q*BERT is using an
action space six orders of magnitude larger than previous agents—indicating the overall
efficacy of my combined state-action space. The additional graph extraction results show
that improving graph quality also improves sample efficiency of knowledge graph-based

reinforcement learning agents.
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CHAPTER §
STRUCTURED EXPLORATION

Most text-adventure games are structured as quests with high branching factors in which
players must solve a sequence of puzzles to advance the story and gain score—i.e. there
are usually multiple ways to finish a quest. To solve these puzzles, players have freedom
to a explore both new areas and previously unlocked areas of the game, collect clues, and
acquire tools needed to solve the next puzzle and unlock the next portion of the game. From
a Reinforcement Learning perspective, these puzzles can be viewed as bottlenecks that act
as partitions between different regions of the state space. Whereas the multiple pathways to
completion through puzzles may intuitively seem to make the problem easier, the opposite
is true. I contend that existing Reinforcement Learning agents that are unaware of such
latent structure and are thus poorly equipped for solving these types of problems.

In this chapter I introduce a new agent: MC!Q*BERT that builds on Q*BERT, de-
signed with this latent structure in mind. As we saw in Chapter 4, Q*BERT improves on
existing text-game agents that use knowledge graph-based state representations by framing
knowledge graph construction during exploration as a question-answering task. To train
Q*BERT’s knowledge graph extractor, I introduced the Jericho-QA dataset for question-
answering in text-games. I also showed that it leads to improved knowledge graph accuracy
and sample efficiency compared to a rules-based approach.

However, improved knowledge graph accuracy is not enough to overcome bottlenecks;
it does not improve asymptotic performance. To this end, MC!Q*BERT (Modular policy
Chaining! Q*BERT) extends Q*BERT by combining two innovations: (1) an intrinsic mo-
tivation based on expansion of its knowledge graph both as a way to encourage exploration
as well as a means for the agent to self-detect when it is stuck; and (2) by additionally

introducing a structured exploration algorithm that, when stuck on a bottleneck, will back-
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" Observation: West of House You are standing in an open field west of a white house, with a boarded front door. There is a ‘
: small mailbox here.

Action: Open mailbox
;_Observation: Opening the small mailbox reveals a leaflet.

Action: Read leaflet

" Observation: (Taken) "WELCOME TO ZORK! ZORK is a game of adventure, danger, and low cunning. In it you will '
; explore some of the most amazing territory ever seen by mortals. No computer should be without one!”

Action: Go north

IAObservation: North of House You are facing the north side of a white house. There is no door here, and all the windows are .
: boarded up. To the north a narrow path winds through the trees.

Figure 5.1: Excerpt from Zorkl.

track through the sequence of states leading to the current bottleneck, in search of alter-
native solutions. As MC!Q*BERT overcomes bottlenecks, it constructs a modular policy
that chains together the solutions to multiple bottlenecks. Like Go Explore (Ecoffet et al.
2021), MC!Q*BERT relies on the determinism present in many text-games to reliably re-
visit previous states. However, I show that MC!Q*BERT’s ability to detect bottlenecks via
the knowledge graph state representation enable it to outperform such alternate exploration
strategies on nine different games.

My contributions in this chapter are as follows: 1) I show that intrinsic motivation
reward based on knowledge graph expansion is capable of reliably identifying bottleneck
states. 2) Further, I show that structured exploration in the form of backtracking can be
used to overcome these bottleneck states and reach state-of-the-art levels of performance

on the Jericho benchmark (Hausknecht et al. 2020).

5.1 Understanding Bottleneck States

Overcoming bottlenecks is not as simple as selecting the correct action from the bottleneck
state. Most bottlenecks have long-range dependencies that must first be satisfied: Zorkl for

instance features a bottleneck in which the agent must pass through the unlit Cellar where

77



a monster known as a Grue lurks, ready to eat unsuspecting players who enter without a
light source. To pass this bottleneck the player must have previously acquired and lit the
lantern. Other bottlenecks don’t rely on inventory items and instead require the player to
have satisfied an external condition such as visiting the reservoir control to drain water
from a submerged room before being able to visit it. In both cases, the actions that fulfill
dependencies of the bottleneck, e.g. acquiring the lantern or draining the room, are not
rewarded by the game. Thus agents must correctly satisfy all latent dependencies, most of
which are unrewarded, then take the right action from the correct location to overcome such
bottlenecks. Consequently, most existing agents—regardless of whether they use a reduced
action space (Zahavy et al. 2018; Yin and May 2019b) or the full space (Ammanabrolu
and Hausknecht 2020; Hausknecht et al. 2020)—have failed to consistently clear these
bottlenecks.

To better understand how to design algorithms that pass these bottlenecks, I first need
to gain a sense for what they are. I observe that quests in text games can be modeled in the
form of a dependency graph. These dependency graphs are directed acyclic graphs (DAGs)
where the vertices indicate either rewards that can be collected or dependencies that must be
met to progress and are generally unknown to a player a priori. In text-adventure games the
dependencies are of two types: items that must be collected for future use, and locations
that must be visited. An example of such a graph for the game of Zorkl can found in
Fig. 5.2.

More formally, bottleneck states are vertices in the dependency graph that, when the
graph is laid out topographically, are (a) the only state on a level, and (b) there is another
state at a higher level with non-zero reward. Bottlenecks can be mathematically expressed
as follows: let D = (V, E) be the directed acyclic dependency graph for a particular game
where each vertex is tuple v = (s, s;,7(s)) containing information on some state s such
that s; are location dependencies, s; are inventory dependencies, and r(s) is the reward

associated with the state. There is a directed edge e € E between any two vertices such
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Figure 5.2: Portion of the Zorkl quest structure visualized as a directed acyclic graph.
Each node represents a state; clouds represent areas of high branching factor with labels
indicating some of the actions that must be performed to progress

Loc: West of House
Inv: None
navigate

Loc: Behind House
Inv: None

that the originating state meets the requirements s; and s; of the terminating vertex. D can
be topologically sorted into levels L = {l4, ..., [,,} where each level represents a set of game
states that are not dependant on each other. I formulate the set of all bottleneck states in the

game:

B={b: (il =1,0€l,V)A@s€el;st (j>iAr(s)#0))} (5.1)

This reads as the set of all states that that belong to a level with only one vertex and that
there exists some state with a non-zero reward that depends on it. Intuitively, regardless
of the path taken to get to a bottleneck state, any agent must pass it in order to continue
collecting future rewards. Behind House is an example of a bottleneck state as seen in
Fig. 5.2. The branching factor before and after this state is high but it is the only state

through which one can enter the Kitchen through the window.

5.2 Structured Exploration

This section describes MC!Q*BERT an exploration method built on Q*BERT that detects
overcomes bottlenecks by backtracking and policy chaining. This method of chaining poli-
cies and backtracking can be thought of in terms of options (Sutton et al. 1999; Stolle and
Precup 2002), where the agent decomposes the task of solving the text game into the sub-
tasks, each of which has it’s own policy. In my case, each sub-task delivers the agent to a

bottleneck state.
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Algorithm 3 Structured Exploration

{Wchainu Thy 7} <~ (;5
{Sbvs} — (b

> Chained, backtrack, current policy
> Backtrack, current state buffers

S0, Tinit < ENV.RESET()
jmax < Thnit; P < 0
for timestep tin 0...M do
St41,7¢, T < Q*BERTUPDATE(S;, )
S+ S+ St+1
p<p+1
if 7 (1) < Jimax then
if p > patience then
Sty Tmax, T < BACKTRACK (7p, Sp)

> Train for M Steps

> Append current state to state buffer
> Lose patience

> Stuck at a bottleneck

> Bottleneck passed; Add 7 to the chained policy
Tchain €~ Tchain T T
if J(7) > Jmax then

Tmax < J(m);7p T8y <= S;p 0
return 7pain

> New highscore found

> Chained policy that reaches max score

function Q*BERTUPDATE(s¢, 7)
St+1,7g,  ENV.STEP(s¢, )
¢ <= CALCULATEREWARD(S¢41,7g,)
7 < A2C.UPDATE(T, r¢)
return St4+1,T¢, T

> One-step update
> Section 4.3
>Eq. 5.3

> Appendix B.2

function BACKTRACK(7, Sp)
for b in REVERSE(S,) do
So by @
for timestep ¢ in 0...N do
St4+1,7¢, ™  Q*BERTUPDATE(s¢, )
if 7 () > J(mp) then return s;, ¢,
Terminate

> Try to overcome bottleneck
> States leading to highscore

> Train for N steps

> Can’t find better score; Give up.

5.2.1 Bottleneck Detection using Intrinsic Motivation

Inspired by McGovern and Barto (2001), I present an intuitive way of detecting bottleneck
states such as those in Fig. 5.2—or sub-tasks—in terms of whether or not the agent’s
ability to collect reward stagnates. If the agent does not collect a new reward for a number
of environment interactions—defined in terms of a patience parameter—then it is possible
that it is stuck due to a bottleneck state. An issue with this method, however, is that the
placement of rewards does not always correspond to an agent being stuck. Complicating
matters, rewards are sparse and often delayed; the agent not collecting a reward for a while

might simply indicate that further exploration is required instead of truly being stuck.
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To alleviate these issues, I define an intrinsic motivation for the agent that leverages the
knowledge graph being built during exploration. The motivation is for the agent to learn
more information regarding the world and expand the size of its knowledge graph. This
provides us with a better indication of whether an agent is stuck or not—a stuck agent does
not visit any new states, learns no new information about the world, and therefore does
not expand its knowledge graph—Ileading to more effective bottleneck detection overall.
To prevent the agent from discovering reward loops based on knowledge graph changes, I

formally define this reward in terms of new information learned.

t—1

e, = A(KGgoba — KGi) where KGgopa = | J KG; (5.2)

=1

Here KGgionai is the set of all edges that the agent has ever had in its knowledge graph and
the subtraction operator is a set difference. When the agent adds new edges to the graph
perhaps as a the result of finding a new room KGgopa changes and a positive reward is
generated—this does not happen when that room is rediscovered in subsequent episodes.
This is then scaled by the game score so the intrinsic motivation does not drown out the

actual quest rewards, the overall reward the agent receives at time step ¢ looks like this:

Tg, T €

(5.3)

Ty =Tg, + QT
max

where € is a small smoothing factor, « is a scaling factor, r,, is the game reward, rp,, is the
maximum score possible for that game, and r; is the reward received by the agent on time

step t.

5.2.2  Modular Policy Chaining

A primary reason that agents fail to pass bottlenecks is not satisfying all the required depen-
dencies. To solve this problem, I introduce a method of policy chaining, where the agent

uses the determinism of the simulator to backtrack to previously visited states in order to
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fulfill dependencies required to overcome a bottleneck.

Specifically, Algorithm 3 optimizes the policy 7 as usual, but also keeps track of a
buffer S of the distinct states and knowledge graphs that led up to each state (I use state
s; to colloquially refer to the combination of an observation o, and knowledge graph KG,).
Similarly, a bottleneck buffer S, and policy 7, reflect the sequence of states and policy with
the maximal return [J,,x—consisting of the cumulative intrinsic as well as game rewards.
A bottleneck is identified when the agents fails to improve upon J..x after patience num-
ber of steps, i.e. no improvement in raw game score or knowledge-graph-based intrinsic
motivation reward. The agent then backtracks by searching backwards through the state se-
quence Sy, restarting from each of the previous states—and training for N steps in search
of a more optimal policy to overcome the bottleneck. When such a policy is found, it is
appended to modular policy chain 7¢h,i,. Conversely, if no such policy is found, then I have

failed to pass the current bottleneck and the training terminates.

5.3 Evaluation

I measure the utility of the knowledge graph-based intrinsic motivation in bottleneck de-
tection and conduct an empirical comparison between MC!Q*BERT and other exploration

strategies.

5.3.1 Intrinsic Motivation and Exploration Strategy Evaluation

MC!Q*BERT. Modularly Chained Q*BERT is evaluated by first testing policy chaining
with only game reward and then with both game reward and intrinsic motivation. I pro-
vide a qualitative analysis of the bottlenecks detected with both methods with respect to
those found in Fig. 5.2 on Zorkl. Because MC!Q*BERT exploits structural domain as-
sumptions that Q*BERT and KG-A2C cannot, I create a strong alternative baseline that
looks at whether modular chaining improves over a related exploration strategy used in

Go-Explore (Ecoffet er al. 2021).
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Table 5.1: Averaged asymptotic scores on games by different methods across 5 independent
runs. For KG-A2C and Q*BERT, I present scores averaged across the final 100 episodes
as well as max scores. Methods using exploration strategies show only max scores because
Episode Average Score (Eps.) conflates forward progress and backtracking. Agents are
allowed 10° steps for each parallel A2C agent with a batch size of 16.

Expt. Game reward Intrinsic

Agent KG-A2C Q*BERT MC!Q* | MC!Q* | GO!Q*

Metric Eps. | Max | Eps. | Max Max Max Max
zork1 34 35 | 34.1 35 32 41.6 31
library 14.3 19 10.0 18 19 19 18
detective | 207.9 | 214 | 246.1 | 274 320 330 304
balances 10 10 10 10 10 10 10
pentari 50.7 56 | 51.2 56 56 58 40
ztuu 6 9 5 5 5 11.8 5
ludicorp 17.8 19 18 19 19 22.8 20.6
deephome 1 1 1 1 8 6 1
temple 7.6 8 7.9 8 8 8 8

GO!Q*BERT. is a baseline that makes the same underlying assumptions regarding
the simulator as MC!Q*BERT but operates differently by tracking sub-optimal and under-
explored states in order to allow the agent to explore upon more optimal states that may
be a result of sparse rewards. This baseline trains Q*BERT in parallel to generate actions
from the full action space used for exploration. It is based on the Go-Explore (Ecoffet e?
al. 2021) algorithm which consists of two phases, the first to continuously explore until a
set of promising states and corresponding trajectories are found on the basis of total score,
and the second to robustify this found policy against potential stochasticity in the game.
Promising states are defined as those states when explored from will likely result in higher
reward trajectories. Madotto et al. (2020) look at applying Go-Explore to text-games on a
set of simpler games generated using the game generation framework TextWorld (Coté et
al. 2018). They use a small set of “admissible actions”—actions guaranteed to change the
world state at any given step during Phase 1—to explore and find high reward trajectories.

When MC!Q*BERT only uses game reward it matches Q*BERT on 5 out of 9 games
and outperforms on 3 out of 9 games. When MC!Q*BERT uses intrinsic motivation plus
game reward, it strictly outperforms KG-A2C and Q*BERT on 6 out of 9 games and

matches it on the rest. MC!Q*BERT outperforms GO!Q*BERT on 7 games and matches
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Figure 5.3: Max reward curves for exploration strategies.

Figure 5.4: Select ablation results on Zorkl conducted across 5 independent runs per ex-
periment. I see where the agents using structured exploration pass each bottleneck seen
in Fig. 5.2. Q*BERT without IM is unable to detect nor surpass bottlenecks beyond the
Cellar.

on 2, indicating that the modular chaining exploration strategy exploits the intrinsic moti-

vation of knowledge graph learning better than the closest alternative exploration strategy.

5.4 Analysis

Table 5.1 shows that across all the games MC!Q*BERT matches or outperforms the current
state-of-the-art when compared across the metric of the max score consistently received
across runs. There are two main trends: First, MC!Q*BERT strongly benefits from the
inclusion of intrinsic motivation rewards. Qualitatively, I illustrate this with Zorkl, the
canonical commercial text-adventure game that no RL agent has ever beaten. An analysis of
bottlenecks detected by each agent in this game reveals differences in the overall accuracy
of the bottleneck detection between MC!Q*BERT with and without intrinsic motivation.
With intrinsic motivation, across 5 independent runs, MC!Q*BERT had an average true
positive bottleneck state detection rate of 63%, false positive of 37%, with 50% coverage;

and without it has a true positive rate of 58%, false positive of 42%, with coverage of
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25%—assuming that the states such as in Fig. 5.2 represent the ground truth for bottlenecks.
Coverage here refers to the number of unique bottlenecks states found during exploration
compared to the total number of such states in the ground truth. This indicates that overall
quality of bottleneck detection significantly improves given intrinsic motivation—enabling
MC!Q*BERT to backtrack and surpass them. Figure 5.3 shows when each of these agents
detect and subsequently overcome the bottlenecks outlined in Figure 5.2.

When intrinsic motivation is not used, the agent discovers that it can get to the Kitchen
with a score of +10 and then Cellar with a score of +25 immediately after. It forgets
how to get the Egg with a smaller score of 45 and never makes it past the Grue in the
Cellar. Intrinsic motivation avoids this in two ways: (1) it makes it less focused on a locally
high-reward trajectory—making it less greedy and helping it chain together rewards for the
Egg and Cellar, and (2) provides rewards for fulfilling dependencies that would otherwise
not be rewarded by the game—this is seen by the fact that it learns that picking up the
lamp is the right way to surpass the Cellar bottleneck and reach the Painting. A similar
behavior is observed with GO!Q*BERT: the agent settles prematurely on a locally high-
reward trajectory and thus never has incentive to find more globally optimal trajectories by
fulfilling the underlying dependency graph. Here, the likely cause is due to GO!Q*BERT’s
inability to backtrack and rethink discovered locally-maximal reward trajectories.

The results seen in Table 4.6, when the agent is given the ground truth knowledge
graph, show that both Q*BERT and MC!Q*BERT perform on average better than when
using graphs built from QA (or rules in the case of KG-A2C). This shows once again that
knowledge graph accuracy is correlated to game performance, though the lower margin in-
dicates that after a certain point—i.e. the accuracy levels of Q* BERT—gains in knowledge
graph accuracy provide diminishing returns with respect to overall performance for this
particular architecture.

Overall, we see that using both the improvements to graph construction in addition to

intrinsic motivation and structured exploration consistently yields higher max scores across
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a majority of the games when compared to the rest of the methods. Having just the im-
provements to graph building or structured exploration by themselves is not enough. Thus
I infer that the full MC!Q*BERT agent is fundamentally exploring this combinatorially-
sized space more effectively by virtue of being able to more consistently detect and clear
bottlenecks. The improvement over systems using default exploration such as KG-A2C
or Q*BERT by itself indicates that structured exploration is necessary when dealing with

sparse and ill-placed reward functions.

5.5 Conclusions

Modern deep reinforcement learning agents using default exploration strategies such as e-
greedy are ill-equipped to deal with the latent structure of dependencies and bottlenecks
found in many text-based games. To help address this challenge, I introduced two new
agents: Q*BERT, an agent that constructs a knowledge graph of the world by asking ques-
tions about it, and MC!Q*BERT, which uses intrinsic motivation to grow the graph and
detect bottlenecks arising from delayed rewards. A key insight from ablation studies is that
the graph-based intrinsic motivation is crucial for bottleneck detection, preventing the agent
from falling into locally optimal high reward trajectories due to ill-placed rewards. Policy
chaining used in tandem with intrinsic motivation results in agents that explore further in
the game by clearing bottlenecks more consistently.

I would like to conclude with a discussion on the relative differences in the assumptions
that Q*BERT and MC!Q*BERT make regarding the underlying environment. Although
both are framed as POMDPs, MC!Q*BERT makes stronger assumptions regarding the de-
terminism of the game as compared to Q*BERT. MC!Q*BERT (and GO!Q*BERT) rely
on the fact that the set of transition probabilities in a text-game are mostly deterministic.
Using this, they are able to assume that frozen policies can be executed deterministically,
i.e. with no significant deviations from the original trajectory. It is possible to robustify

such policies by extending my method of structured exploration to perhaps perform im-
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itation learning on the found highest score trajectories as seen in Phase 2 of the original
GoExplore algorithm (Ecoffet et al. 2021). Stochasticity is not among set of challenges
tackled in this work, however—I focus on learning how to better explore combinatorially-
sized spaces with underlying long-term dependencies. For future works in this space, |
believe that agents should be compared based on the set of assumptions made: agents like
KG-A2C and Q*BERT when operating under standard reinforcement learning assump-
tions, and MC!Q*BERT and GO!Q*BERT when under the stronger assumption of having

a deterministic simulator.

87



CHAPTER 6
COMMONSENSE REASONING IN TEXTUAL WORLDS

Many real-world activities can be thought of as a sequence of sub-goals in a partially ob-
servable environment. These activities—getting ready to go to work, for example—are
considered trivial for humans because of commonsense knowledge. Commonsense knowl-
edge is defined as a set of facts, beliefs, and procedures shared among many people in
the same society or culture. However, to an agent learning purely by interacting with the
environment, even simple tasks can require considerable trial-and-error.

Learning a control policy for a text-adventure game requires a significant amount of
exploration, resulting in training runs that take hundreds of thousands of simulations (Am-
manabrolu and Riedl 2019b; Narasimhan et al. 2015). One reason that text-adventure
games require so much exploration is that most deep reinforcement learning algorithms are
trained on a task without a real prior. In essence, the agent must learn everything about
the game from only its interactions with the environment. Yet, text-adventure games make
ample use of commonsense knowledge (e.g., an axe can be used to cut wood) and genre
themes (e.g., in a horror or fantasy game, a coffin is likely to contain a vampire or other
undead monster). This is in addition to the challenges innate to the text-adventure game
itself—games are puzzles—which results in inefficient training.

I hypothesize that access to commonsense knowledge can enable an agent to more
quickly converge on a policy that completes common, everyday tasks. I further hypothesize
that commonsense knowledge can allow the agent to infer the presence of elements in the
world when observations are noisy or fail. While some prior text-based game playing
methods have incorporated commonsense knowledge (Murugesan et al. 2020; Fulda et al.
2017), I build off state of the art knowledge graph based techniques.

I explore the use of knowledge graphs and associated neural embeddings as a medium
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for domain transfer to improve training effectiveness on new text-adventure games. Specif-
ically, I explore transfer learning at multiple levels and across different dimensions. I first
look at the effects of playing a text-adventure game given a strong prior in the form of
a knowledge graph extracted from generalized textual walk-throughs of interactive fiction
as well as those made specifically for a given game. Next, I explore the transfer of con-
trol policies in deep Q-learning (DQN) by pre-training portions of a deep Q-network using
question-answering and by DQN-to-DQN parameter transfer between games. I evaluate
these techniques on two different sets of human authored and computer generated games,
demonstrating that my transfer learning methods enable us to learn a higher-quality control
policy faster.

I further introduce two novel approaches that incorporate commonsense knowledge into
game playing deep reinforcement learning agents using large scale pretraining, comparing
my agents to the current state-of-the-art as a baseline. (1) I use a commonsense knowledge
inference model to infer what can be known about the world based on text descriptions.
Specifically, COMET (Bosselut et al. 2019) is a neural model that takes a simple sentence
and infers what will be commonly believed about the people and objects referenced in the
sentence. (2) Because commonsense knowledge also manifests itself as procedural knowl-
edge, my final technique biases the agent toward sequences of action commands that BERT
finds probable when predicting the next sentence. I further experiment with Q*BERT using

a question-answering language model as source of commonsense knowledge.

6.1 Knowledge Graph Seeding

In this section I consider the problem of transferring a knowledge graph from a static text
resource to a DQN—which I refer to as seeding. KG-DQN uses a knowledge graph as a
state representation and also to prune the action space. This graph is built up over time,
through the course of the agent’s exploration. When the agent first starts the game, How-

ever, this graph is empty and does not help much in the action pruning process. The agent
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Figure 6.1: A select partial example of what a seed knowledge graph looks like. Ellipses
indicate other similar entities and relations not shown.

thus wastes a large number of steps near the beginning of each game exploring ineffectively.
The intuition behind seeding the knowledge graph from another source is to give the
agent a prior on which actions have a higher utility and thereby enabling more effective
exploration. Text-adventure games typically belong to a particular genre of storytelling—
e.g., horror, sci-fi, or soap opera—and an agent is at a distinct disadvantage if it doesn’t
have any genre knowledge. Thus, the goal of seeding is to give the agent a strong prior.
This seed knowledge graph is extracted from online general text-adventure guides as
well as game/genre specific guides when available.! The graph is extracted from this the
guide using a subset of the rules described in Chapter 3 used to extract information from the
game observations, with the remainder of the RDF triples coming from OpenlE. There is no
map of rooms in the environment that can be built, but it is possible to extract information
regarding affordances of frequently occurring objects as well as common actions that can
be performed across a wide range of text-adventure games. This extracted graph is thus
potentially disjoint, containing only this generalizable information, in contrast to the graph

extracted during the rest of the exploration process. An example of a graph used to seed

! An example of a guide I use is found here http://www.microheaven.com/IFGuide/step3.html
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KG-DQN is given in Fig. 6.1. The KG-DOQN is initialized with this knowledge graph.

6.2 Game Play as Question Answering

Previous work has shown that many NLP tasks can be framed as instances of question-
answering and that in doing so, one can transfer knowledge between these tasks (McCann
et al. 2017). In the abstract, an agent playing a text adventure game can be thought of as
continuously asking the question “What is the right action to perform in this situation?”
When appropriately trained, the agent may be able to answer the question for itself and
select a good next move to execute. Treating the problem as question-answering will not
replace the need for exploration in text-adventure games. However, 1 hypothesize that
it will cut down on the amount of exploration needed during testing time, theoretically
allowing it to complete quests faster; one of the challenges of text adventure games is that
the quests are puzzles and even after training, execution of the policy requires a significant
amount of exploration.

To teach the agent to answer the question of what action is best to take given an ob-
servation, I use an offline, pre-training approach. The data for the pre-training approach
is generated using an oracle, an agent capable of finishing a game perfectly in the least
number of steps possible. Specifically, the agent knows exactly what action to take given
the state observation in order to advance the game in the most optimal manner possible.
Through this process, I generate a set of traces consisting of state observations and actions
such that the state observation provides the context for the implicit question of ”"What action
should be taken?”” and the oracle’s correct action is the answer. I then use the DrQA (Chen
et al. 2017) question-answering technique to train a paired question encoder and an answer
encoder that together predict the answer (action) from the question (text observation). The
weights from the SB-LSTM in the document encoder in the DrQA system are then used
to initialize the weights of the SB-LSTM. Similarly, embedding layers of both the graph

and the LSTM action encoder are initialized with the weights from the embedding layer of
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same document encoder. Since the DrQA embedding layers are initialized with GloVe, I
am transferring word embeddings that are tuned during the training of the QA architecture.

The game traces used to train the question-answering come from a set of games of the
same domain but have different specific configurations of the environment and different
quests. I use the TextWorld framework (Coté et al. 2018), which uses a grammar to generate
random worlds and quests. The types of rooms are the same, but their relative spatial
configuration, the types of objects, and the specific sequence of actions needed to complete
the quest are different each time. This means that the agent cannot simply memorize quests.
For pre-training to work, the agent must develop a general question-answering competence
that can transfer to new quests. My approach to question-answering in the context of text

adventure game playing thus represents a form of transfer learning.

6.3 Task Specific Transfer

The overarching goal of transfer learning in text-adventure games is to be able to train an
agent on one game and use this training to improve the learning capabilities of another.
There is growing body of work on improving training times on target tasks by transferring
network parameters trained on source tasks (Yin H. and Pan 2017; Rusu et al. 2016; Ra-
jendran et al. 2017). Of particular note is the work by Rusu e al. (2016), where they train
a policy on a source task and then use this to help learn a new set of parameters on a target
task. In this approach, decisions made during the training of the target task are jointly made
using the frozen parameters of the transferred policy network as well as the current policy
network.

My system first trains a question-answering system (Chen et al. 2017) using traces
given by an oracle, as in Section 6.1. For commercial text-adventure games, these traces
take the form of state-action pairs generated using perfect walkthrough descriptions of the
game found online as described in Section 6.1.

I use the parameters of the question-answering system to pre-train portions of the deep
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Figure 6.2: The KG-DQN transfer architecture.

Q-network for a different game within in the same domain. The portions that are pre-trained
are the same parts of the architecture as in Ammanabrolu and Riedl (2019b). This game is
referred to as the source task. The seeding of the knowledge graph is not strictly necessary
but given that state-of-the-art DRL agents cannot complete real games, this makes the agent
more effective at the source task.

I then transfer the knowledge and skills acquired from playing the source task to another
game from the same genre—the target task. The parameters of the deep Q-network trained
on the source game are used to initialize a new deep Q-network for the target task. All the
weights indicated in the architecture of KG-DQN as shown in Fig. 6.2 are transferred.
Unlike Rusu et al. (2016), I do not freeze the parameters of the deep Q-network trained
on the source task nor use the two networks to jointly make decisions but instead just use

it to initialize the parameters of the target task deep Q-network. This is done to account
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for the fact that although graph embeddings can be transferred between games, the actual
graph extracted from a game is non-transferable due to differences in structure between the

games.

6.3.1 Evaluating Commonsense Transfer

I test my system on two separate sets of games in different domains using the Jericho and
TextWorld frameworks (Hausknecht et al. 2020; Co6té et al. 2018). The first set of games
is “slice of life” themed and contains games that involve mundane tasks usually set in
textual descriptions of normal houses. The second set of games is “horror” themed and
contains noticeably more difficult games with a relatively larger vocabulary size and action
set, non-standard fantasy names, etc. I choose these domains because of the availability
of games in popular online gaming communities, the degree of vocabulary overlap within
each theme, and overall structure of games in each theme. Specifically, there must be at
least three games in each domain: at least one game to train the question-answering system
on, and two more to train the parameters of the source and target task deep Q-networks.
A summary of the statistics for the games is given in Table 6.1. Vocabulary overlap is
calculated by measuring the percentage of overlap between a game’s vocabulary and the
domain’s vocabulary, i.e. the union of the vocabularies for all the games I use within
the domain. I observe that in both of these domains, the complexity of the game increases
steadily from the game used for the question-answering system to the target and then source
task games.

I perform ablation tests within each domain, mainly testing the effects of transfer from
seeding, oracle-based question-answering, and source-to-target parameter transfer. Addi-
tionally, there are a couple of extra dimensions of ablations that I study, specific to each
of the domains and explained below. All experiments are run three times using different
random seeds. For all the experiments I report metrics known to be important for transfer

learning tasks (Narasimhan et al. 2017; Taylor and Stone 2009): average reward collected
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Table 6.1: Game statistics.

Slice of life Horror
QA/Source  Target QA Source Target

TextWorld ~ 9:05 | Lurking Horror Afflicted Anchorhead
Vocab size 788 297 773 761 2256
Branching factor 122 677 - 947 1918
Number of rooms 10 7 25 18 28
Completion steps 5 25 289 20 39
Words per obs. 65.1 45.2 68.1 81.2 114.2
New triples per obs. 6.4 4.1 - 12.6 17.0
% Vocab overlap 19.70  21.45 22.80 14.40 66.34
Max. aug. reward 5 27 - 21 43

in the first 50 episodes (init. reward), average reward collected for 50 episodes after con-
vergence (final reward), and number of steps taken to finish the game for 50 episodes after
convergence (steps). For the metrics tested after convergence, I set € = 0.1 following both
Narasimhan et al. (2015) and Ammanabrolu and Riedl (2019b). I use similar hyperparam-
eters to those reported in Ammanabrolu and Riedl (2019b) for training the KG-DQN with
action pruning, with the main difference being that I use 100 dimensional word embeddings

instead of 50 dimensions for the horror genre.

6.3.2 Slice of Life Experiments

TextWorld uses a grammar to generate similar games. Following Ammanabrolu and Riedl
(2019b), I use TextWorld’s “home” theme to generate the games for the question-answering
system. TextWorld is a framework that uses a grammar to randomly generate game worlds
and quests. This framework also gives us information such as instructions on how to finish
the quest, and a list of actions that can be performed at each step based on the current world
state. I do not let my agent access this additional solution information or admissible actions
list. Given the relatively small quest length for TextWorld games—games can be completed
in as little as 5 steps—I generate 50 such games and partition them into train and test sets in
a 4:1 ratio. The traces are generated on the training set, and the question-answering system
is evaluated on the test set.

I then pick a random game from the test set to train my source task deep Q-network
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Bedroom
This bedroom is extremely spare, with dirty laundry scattered
haphazardly all over the floor. Cleaner clothing can be found in the
dresser. A bathroom lies to the south, while a door to the east leads to the
living room. On the end table are a telephone, a wallet and some keys.
>inventory
You are carrying:

some soiled clothing (being worn)

a gold watch (being worn)
>go south
Bathroom
This is a far from luxurious but still quite functional bathroom, with a
sink, toilet and shower. The bedroom lies to the north.

Figure 6.3: Partial unseeded knowledge graph example given observations and actions in
the game 9:05.

for this domain. For this training, I use the reward function provided by TextWorld: +1
for each action taken that moves the agent closer to finishing the quest; -1 for each action
taken that extends the minimum number of steps needed to finish the quest from the current
stage; O for all other situations.

I choose the game, 9:05° as my target task game due to similarities in structure in
addition to the vocabulary overlap. Note that there are multiple possible endings to this

game and I pick the simplest one for the purpose of training my agent.

Zhttps://ifdb.tads.org/viewgame?id=qzftg3j8nh5f34i2
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outside
the real
estate
office

narrow,
transom style
window

Outside the Real Estate Office

A grim little cul-de-sac, tucked away in a corner of the claustrophobic
tangle of narrow, twisting avenues that largely constitute the older portion
of Anchorhead. Like most of the streets in this city, it is ancient, shadowy,
and leads essentially nowhere. The lane ends here at the real estate agent's
office, which lies to the east, and winds its way back toward the center of
town to the west. A narrow, garbage-choked alley opens to the southeast.
>go southeast

Alley

This narrow aperture between two buildings is nearly blocked with piles of
rotting cardboard boxes and overstuffed garbage cans. Ugly, half-
crumbling brick walls to either side totter oppressively over you. The alley
ends here at a tall, wooden fence. High up on the wall of the northern
building there is a narrow, transom-style window.

Figure 6.4: Partial unseeded knowledge graph example given observations and actions in
the game Anchorhead.

6.3.3 Horror Experiments

For the horror domain, I choose Lurking Horror® to train the question-answering system
on. The source and target task games are chosen as Afflicted* and Anchorhead® respec-
tively. However, due to the size and complexity of these two games some modifications to
the games are required for the agent to be able to effectively solve them. I partition each of
these games and make them smaller by reducing the final goal of the game to an intermedi-
ate checkpoint leading to it. This checkpoints were identified manually using walkthroughs

of the game; each game has a natural intermediate goal. For example, Anchorhead is seg-

3https://ifdb.tads.org/viewgame?id=jhbdOkjalt57uop
“https://ifdb.tads.org/viewgame ?id=epl4q2933rczo09x
Shttps://ifdb.tads.org/viewgame?id=opOuw 1 gn1tjqmijt7
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Figure 6.5: Reward curve for select experiments in the slice of life domain.

Table 6.2: Results for the slice of life games. “KG-DQN Full” refers to KG-DQN when
seeded first, trained on the source, then transferred to the target. All experiment with QA
indicate pre-training. S, D indicate sparse and dense reward respectively.

Experiment | Init. Rwd. | Final Rwd. | Steps
Source Game (TextWorld)
KG-DOQN no transfer | 2.6 £0.73 | 4.7 +£0.23 | 110.83 +4.92
KG-DQN w/ QA 2.84+0.61 | 49+0.09 | 88.57 +3.45
KG-DQN seeded 324057 | 48+0.16 | 91.43 +£1.89

mented into 3 chapters in the form of objectives spread across 3 days, of which I use only
the first chapter. The exact details of the games after partitioning is described in Table 6.1.
For Lurking Horror, I report numbers relevant for the oracle walkthrough. I then pre-prune
the action space and use only the actions that are relevant for the sections of the game that
I have partitioned out. The majority of the environment is still available for the agent to

explore but the game ends upon completion of the chosen intermediate checkpoint.

6.3.4 Reward Augmentation

The combined state-action space for a commercial text-adventure game is quite large and
the corresponding reward function is very sparse in comparison. The default, implied
reward signal is to receive positive value upon completion of the game, and no reward
value elsewhere. This is problematic from an experimentation perspective as text-adventure

games are too complex for even state-of-the-art deep reinforcement learning agents to com-
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plete. Even using transfer learning methods, a sparse reward signal usually results in inef-
fective exploration by the agent.

To make experimentation feasible, I augment the reward to give the agent a dense re-
ward signal. Specifically, I use an oracle to generate state-action traces (identical to how as
when training the question-answering system). An oracle is an agent that is capable of play-
ing and finishing a game perfectly in the least number of steps possible. The state-action
pairs generated using perfect walkthroughs of the game are then used as checkpoints and
used to give the agent additional reward. If the agent encounters any of these state-action
pairs when training, i.e. performs the right action given a corresponding state, it receives
a proportional reward in addition to the standard reward built into the game. This reward
is scaled based on the game and is designed to be less than the smallest reward given by
the original reward function to prevent it from overpowering the built-in reward. I refer to
agents using this technique as having “dense” reward and “sparse” reward otherwise. The
agent otherwise receives no information from the oracle about how to win the game.

The structure of the experiments are such that the for each of the domains, the target
task game is more complex that the source task game. The slice of life games are also
generally less complex than the horror games; they have a simpler vocabulary and a more
linear quest structure. Additionally, given the nature of interactive fiction games, it is nearly
impossible—even for human players—to achieve completion in the minimum number of
steps (as given by the steps to completion in Table 6.1); each of these games are puzzle
based and require extensive exploration and interaction with various objects in the environ-
ment to complete.

Table 6.2 and Table 6.3 show results for the slice of life and horror domains, respec-
tively. In both domains seeding and QA pre-training improve performance by similar
amounts from the baseline on both the source and target task games. A series of t-tests
comparing the results of the pre-training and graph seeding with the baseline KG-DQN

show that all results are significant with p < 0.05. Both the pre-training and graph seeding
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Figure 6.6: Reward curve for select experiments in the horror domain.

Table 6.3: Results for horror games. Note that the reward type is dense for all results.
“KG-DQN Full* refers to KG-DQN seeded, transferred from source. All experiment with
QA indicate pre-training.

Experiment | Init. Rwd. | Final Rwd. | Steps

Source Game (Afflicted)

KG-DQN no transfer | 3.0+ 1.3 | 14.1 £1.73 | 1934.7 £+ 85.67
KG-DQN w/ QA 43+134 | 151 +£1.60 | 1179 £+ 32.07
KG-DQN seeded 414+1.19 | 14.6 £1.26 | 1125.3 +49.57

Target Game (Anchorhead)
KG-DQN untuned - 3.8+ 0.23 -

KG-DOQN no transfer | 1.0 £0.34 | 6.8 :0.42 -
KG-DQN w/ QA 3.6 091 | 248+0.6 4874 + 90.74
KG-DQN seeded 1.7+£0.62 | 26.6 2042 | 4937 +£42.93

KG-DQN full 41+09 | 3994+0.53 | 4334.3 +56.13

perform similar functions in enabling the agent to explore more effectively while picking
high utility actions.

Even when untuned, i.e. evaluating the agent on the target task after having only trained
on the source task, the agent shows better performance than training on the target task from
scratch using the sparse reward. As expected, we see a further gain in performance when
the dense reward function is used for both of these domains as well. In the horror domain,
the agent fails to converge to a state where it is capable of finishing the game without the
dense reward function due to the horror games being more complex.

When an agent is trained using on just the target task horror game, Anchorhead, it does

not converge to completion and only gets as far as achieving a reward of approximately
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7 (max. observed reward from the best model is 41). This corresponds to a point in the
game where the player is required to use a term in an action that the player has never
observed before, “look up Verlac” when in front of a certain file cabinet—*“Verlac* being
the unknown entity. Without seeding or QA pre-training, the agent is unable to cut down
the action space enough to effectively explore and find the solution to progress further. The
relative effectiveness of the gains in initial reward due to seeding appears to depend on
the game and the corresponding static text document. In all situations except Anchohead,
seeding provides comparable gains in initial reward as compared to QA — there is no
statistical difference between the two when performing similar t-tests.

When the full system is used—i.e. I seed the knowledge graph, pre-train QA, then train
the source task game, then the target task game using the augmented reward function—I
see a significant gain in performance, up to an 80% gain in terms of completion steps in
some cases. The bottleneck at reward 7 is still difficult to pass, however, as seen in Fig. 6.6,
in which I can see that the agent spends a relatively long time around this reward level
unless the full transfer technique is used. I further see in Figures 6.5, 6.6 that transferring
knowledge results in the agent learning this higher quality policy much faster. In fact, I
note that training a full system is more efficient than just training the agent on a single task,
i.e. training a QA system then a source task game for 50 episodes then transferring and
training a seeded target task game for 50 episodes is more effective than just training the
target task game by itself for even 150+ episodes.

I have demonstrated that using knowledge graphs as a state representation enables effi-
cient transfer between deep reinforcement learning agents designed to play text-adventure
games, reducing training times and increasing the quality of the learned control policy.
My results show that I are able to extract a graph from a general static text resource and
use that to give the agent knowledge regarding domain specific vocabulary, object affor-
dances, etc. Additionally, I demonstrate that I can effectively transfer knowledge using

deep Q-network parameter weights, either by pre-training portions of the network using a
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question-answering system or by transferring parameters from a source to a target game.
My agent trains faster overall, including the number of episodes required to pre-train and
train on a source task, and performs up to 80% better on convergence than an agent not
utilizing these techniques.

I conclude that knowledge graphs enable transfer in deep reinforcement learning agents
by providing the agent with a more explicit—and interpretable—-mapping between the state
and action spaces of different games. This mapping helps overcome the challenges twin
challenges of partial observability and combinatorially large action spaces inherent in all

text-adventure games by allowing the agent to better explore the state-action space.

6.4 Commonsense via Large Scale Pre-training

I experiment with three agents, each with their own approach for incorporating common-
sense knowledge to augment policy learning. All three agents build off the KG-A2C (Am-
manabrolu and Hausknecht 2020) agent framework, which is shown in Figure 6.7. At
every step, KG-A2C uses a heuristic information extraction process to identify ( subject,
relation, object ) triples in the current room’s text description. These triples are added to
an ever-growing knowledge graph, which is embedded and used to inform the choice of
action (text command). The knowledge graph is the agent’s belief about the state of the
world experienced to date. KG-A2C filters out actions that contain object references not
contained in the graph.

The COMET-A2C Agent. This agent is similar to Q*BERT but replaces ALBERT
with COMET Bosselut et al. (2019), a neural commonsense inference model (Figure 6.7).
I use the version of COMET trained on the ConceptNet (Speer and Havasi 2012) dataset
to take text sentences and generate a number of short phrases that may be inferred from
the input text. COMET produces several types of inference templates. I specifically use
COMET’s HasA inference class. COMET-A2C uses KG-A2C’s information extraction

process to produce (subject, relation, object) triples; relationships inferred by COMET
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Figure 6.7: Augmented KG-A2C architecture.

are then added. I hypothesize that COMET will make the agent’s understanding of the
world state more robust by inferring the existence of objects commonly found in certain
types of locations. Figure 6.8 shows an example of the knowledge graph generated by
COMET-A2C for a given text description.

The KG-A2C-BERT Agent. This agent is identical to KG-A2C, except that it uses
a policy-shaping method for exploration (Griffith 2018). Policy-shaping is a technique
whereby an external source of knowledge is used to re-rank a distribution over output ac-
tions during training. KG-A2C-BERT samples the top & action commands generated by the
network and scores each based on a history of previous commands. This is done by con-
catenating the currently proposed command to prior commands and use BERT to compute
Py(ci|ey...ci—1) where ¢; is a command at time step ¢ and 6 is BERTs pre-trained weights.

The k candidate commands are re-ranked according to the score and the agent re-samples
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Figure 6.8: Knowledge Graph generated by COMET-A2C for the observation: This is a far
from luxurious but still quite functional bathroom. The bedroom lies to the north.

Original observation
. Bathroom

This is a far from luxurious but still quite functional bathroom, with a sink, toilet and shower. The bedroom lies to the
. north.

Modified Observation
Bathroom
: This is a far from luxurious but still quite functional bathroom. The bedroom lies to the north.

Figure 6.9: The original and modified observation for the Bathroom in 9:05.

from the new distribution. In Figure 6.7 the green box is removed and re-ranking is applied
to the output of the actor module.

The Q*BERT Agent. Q*BERT( 4), which augments the knowledge graph by using the
pre-trained question-answering model, ALBERT (Lan et al. 2020). ALBERT is first fine-
tuned on a dataset specific to the text-game domain. Q*BERT generates questions about the
current room environment and ALBERT’s answers are converted into (subject, relation, object)
and added to the knowledge graph (Figure 6.7). While Q*BERT was not explicitly design
with commonsense knowledge in mind, I hypothesize that ALBERT can extrapolate from

room text description using knowledge acquired through training on a large corpus of texts.
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6.4.1 Evaluating Commonsense Pre-training

I conduct experiments in the 9:05 slice of life text-based game. In this game, the player
must get ready for work by taking a shower, wearing clean clothes and then travel to the
workplace by car. The game provides a single reward of 1 or O at the end. The branching
factor is very high and the only reward requires 25-30 steps executed in the perfect order.
Due to the extreme sparseness of this feedback, all agents struggle to make any significant
progress. Consequently, I provide a shaped reward function to add reward density. The
agent is rewarded +1 for each of six different actions necessary to complete the task of
taking a shower (Appendix A3). These states may only be observed in sequence and loops
cannot occur.

I conducted two experiments. (1) I assess performance in a version of 9:05 where
reward is given for passing key states. (2) I test agents’ performance when required to sup-
plement missing/failed observations with commonsense inferences. A modified version
of 9:05 has the shaped reward but also deletes all textual references to three critical ob-
jects; the sink, toilet, and shower are omitted from the bat hroom description. See
Figure 6.9 This approximates situations where the agent’s observations may have failed to
observe the objects, or to correctly parse and extract relations pertaining to these objects.
It also simulates the way in which humans recognize that it is unnecessary or obvious to
state facts that everyone would likely agree upon. The objects were not removed, only their

mentions in the text descriptions.

6.4.2 Results and Analysis

Experiment 1 results are shown in Figure 6.10 (left), which plots reward per time step
averaged over five runs. The solid lines are the smoothed mean reward and the shaded
areas show one standard deviation of reward values. KG-A2C gets stuck after entering the
bathroom and never makes it to the shower. KG-A2C-BERT can make it to reward 5 but

does so unreliably—well outside the standard deviation. Since this is rarely achieved, the

105



Episode Reward with Full Observation Episode Reward with Modified Observation

—— COMET-A2C —— KGAXC / — COMET-A2C  —— KGA2C
i —— Q*BERT BERT 1 —— Q*BERT BERT

T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Figure 6.10: Reward performance for all agents on 9:05 with full observations (left) and
modified observations (right). The solid lines show a smoothed average performance with
standard deviation over 5 independent runs.

average performance is similar to that of KG-A2C.

COMET-A2C and Q*BERT are both able to get past the shower (reward 6) and to the
next phase of the game where player drives to work. Their performances in this experi-
ment are not significantly different, although Q*BERT achieves reward 6 or greater more
frequently and thus has a higher mean reward.

Experiment 1 validates that commonsense knowledge helps agent performance in 9:05,
which makes heavy use of locations and situations that also commonly occur in the real
world. KG-A2C-BERT performs better than KG-A2C because BERT informs the agent’s
exploration by comparing action command sequences to patterns BERT recognizes. How-
ever, exploration is stochastic and it rarely progresses far into the game. COMET-A2C
adds HasA relations to the knowledge graph and this helps correlate a richer state with the
best action to take. Q*BERT likely performs better to COMET-A2C due to richer, more
diverse correlations between state and action; this may help navigate actions between the
key rewarded steps.

The results for Experiment 2 are shown in Figure 6.10 (right). In this experiment,
agents contend with missing object references in room descriptions. KG-A2C never makes
it past a score of 2. It enters the bathroom but cannot complete any tasks due to the inability
to directly observe the sink, toilet, or shower. KG-A2C-BERT’s performance is identical

to KG-A2C because action commands are filtered out that do not reference objects in the
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knowledge graph. Whereas filtering normally reduces unlikely exploration, it hurts when
the agent fails to observe objects or observations are unreliable.

COMET-A2C and Q*BERT are able to use the sink, toilet, and shower to successfully
complete all the tasks required in the bathroom which leads to greater reward. As with
Experiment 1, both COMET-A2C and Q*BERT are able to occasionally progress beyond
the bathroom—beyond reward 6. As before, Q*BERT has a non-significantly higher aver-
age reward because it more consistently passes the shower task, whereas COMET-A2C has
more variance in performance.

Experiment 2 confirms my intuitions about the role that commonsense inferences are
playing in the agent’s decision-making. By making the presence of key objects in a location
implicit instead of explicit, I verify in a controlled fashion that commonsense inferences
beneficially augments agents’ senses. The difference in performance between Q*BERT
and COMET-A2C is due to the way they infer commonsense information as detailed earlier.
Both infer the existence of the missing entities, allowing them to progress through the game.

It is natural for commonsense details to be omitted in natural language. This work
demonstrates a deep reinforcement learning framework for “acting through language” can
be made more robust 