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SUMMARY

Natural language communication has long been considered a defining characteristic of

human intelligence. I am motivated by the question of how learning agents can under-

stand and generate contextually relevant natural language in service of achieving a goal.

In pursuit of this objective, I have been studying Interactive Narratives, or text-adventures:

simulations in which an agent interacts with the world purely through natural language—

“seeing” and “acting upon” the world using textual descriptions and commands. These

games are usually structured as puzzles or quests in which a player must complete a se-

quence of actions to succeed. My work studies two closely related aspects of Interactive

Narratives: game-playing and game generation—each presenting its own set of unique

challenges. Structured contextualization, in the form of knowledge graphs, improves

situated natural language generation and understanding in interactive environments

as evaluated by (1) the ability to operate in textual worlds, and (2) the perceived co-

herence and creativity of procedurally generated language-based environments.

Game-playing presents three challenges: (1) Knowledge representation—an agent must

maintain a persistent memory of what it has learned through its experiences with a partially

observable world; (2) Commonsense reasoning to endow the agent with priors on how to

interact with the world around it; and (3) Scaling to effectively explore combinatorially-

sized natural language state-action spaces. On the other hand, game generation can be split

into two complementary considerations: (1) World generation, or the problem of creating a

world that defines the limits of the actions an agent can perform; and (2) Quest generation,

i.e. defining actionable objectives grounded in a given world. I will present my work thus

far—showcasing how structured, interpretable data representations in the form of knowl-

edge graphs aid in each of these tasks—in addition to proposing how exactly these two

aspects of Interactive Narratives can be combined to improve language learning across this

board of challenges.
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CHAPTER 1

WHY INTERACTIVE ENVIRONMENTS?

Natural language communication has long been considered a defining characteristic of hu-

man intelligence. In humans, this communication is grounded in experience and real world

context—“what” we say or do depends on the current context around us and “why” we say

or do something draws on commonsense knowledge gained through experience. So how do

we imbue learning agents with the ability to understand and generate contextually relevant

natural language in service of achieving a goal?

Two key components in creating such agents are interactivity and environment ground-

ing, shown to be vital parts of language learning in humans. Humans learn various skills

such as language, vision, motor skills, etc. more effectively through interactive media (Feld-

man and Narayanan 2004; Barsalou 2008). In the realm of machines, interactive environ-

ments have served as cornerstones in the quest to develop more robust algorithms for learn-

ing agents across many machine learning sub-communities. Environments such as the Atari

Learning Environment (Bellemare et al. 2013) and Minecraft Malmo (Johnson et al. 2016)

have enabled the development of game agents that perform complex tasks while operating

on raw video inputs, and more recently THOR (Kolve et al. 2017) and Habitat (Manolis

Savva* et al. 2019) attempt to do the same with embodied agents in simulated 3D worlds.

Despite such progress in modern machine learning and natural language processing,

agents that can communicate with humans (and other agents) through natural language in

pursuit of their goals are still primitive. One possible reason for this is that many datasets

and tasks used for Natural Language Processing (NLP) are static, not supporting interac-

tion and language grounding (Feldman and Narayanan 2004; Barsalou 2008; Brooks 1991;

Mikolov et al. 2016; Gauthier and Mordatch 2016; Lake et al. 2017). In other words,

there has been a void for such interactive environments for purely language-oriented tasks.
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Figure 1.1: An excerpt from Zork1, a typical text-based adventure game.

Building on recent work in this field, I posit that interactive narratives should be the envi-

ronments of choice for such language-oriented tasks. Interactive Narratives, in general,

is an umbrella term, that refers to any form of digital interactive experience in which users

create or influence a dramatic storyline through their actions (Riedl and Bulitko 2013)—i.e.

the overall story progression in the game is not pre-determined and is directly influenced

by a player’s choices. For the purposes of this work, I consider one particular type of inter-

active narrative: parser-based interactive fiction (or text-adventure) games—though I note

that other forms of interactive narrative, including those with visual components, provide

closely related challenges.

Figure 1.1 showcases Zork (Anderson et al. 1979), one of the earliest and most in-

fluential text-based interactive narrative. These games are simulations in which an agent

interacts with the world through natural language—“perceiving”, “acting upon”, and “talk-

ing to” the world using textual descriptions, commands, and dialogue. The simulations

are partially observable, meaning that the agent never has access to the true underlying

world state and has to reason about how to act in the world based only on potentially the

incomplete textual observations of its immediate surroundings. They provide tractable,
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situated environments in which to explore highly complex interactive grounded language

learning without the complications that arise when modeling physical motor control and

vision—situations that voice assistants such as Siri or Alexa might find themselves in when

improvising responses. These games are usually structured as puzzles or quests with long-

term dependencies in which a player must complete a sequence of actions and/or dialogues

to succeed. This in turn requires navigation and interaction with hundreds of locations,

characters, and objects. The interactive narrative community is one of the oldest gaming

communities and game developers in this genre are quite creative. Put these two things to-

gether and we get very large, complex worlds that contain a multitude of puzzles and quests

to solve across many different genres—everything from slice of life simulators where the

player cooks a recipe in their home to Lovecraftian horror mysteries. The complexity and

diversity of topics enable us to build and test agents that go an extra step towards modeling

the difficulty of situated human language communication.

As the excerpt of the text-game in Figure 1.1 shows, humans bring competencies in

natural language understanding, commonsense reasoning, and deduction to bear in order

to infer the context and objectives of a game. Beyond games, real-world applications such

as voice-activated personal assistants can also benefit from advances in these capabilities

at the intersection of natural language understanding, natural language generation, and se-

quential decision making. These real world applications require the ability to reason with

ungrounded natural language (unlike multimodal environments that provide visual ground-

ing for language) and interactive narratives provide an excellent suite of environments to

tackle these challenges.

1.1 Challenges of Operating in Interactive Environments

Interactive narratives exist at the intersection of natural language processing, storytelling,

and sequential decision making. Like many NLP tasks, they require natural language un-

derstanding, but unlike most NLP tasks, Interactive narratives are sequential decision mak-
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Figure 1.2: A map of Zork1 by artist ion bond.

ing problems in which actions change the subsequent world states of the game and choices

made early in a game may have long term effects on the eventual endings. Reinforce-

ment Learning (Sutton and Barto 1998) studies sequential decision making problems and

has shown promise in vision-based (Jaderberg et al. 2016) and control-based (OpenAI et

al. 2018) environments, but has less commonly been applied in the context of language-

based tasks. Text-based games thus pose a different set of challenges than traditional video

games such as StarCraft. Their puzzle-like structure coupled with a partially observable

state space and sparse rewards require a greater understanding of previous context to enable

more effective exploration—an implicit long-term dependency problem not often found in

other domains that agents must overcome.

1.1.1 Knowledge Representation

Interactive narratives span many distinct locations, each with unique descriptions, objects,

and characters. An example of a world of a interactive fiction game can be seen in Fig-

ure 1.2. Players move between locations by issuing navigational commands like go West.
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This, in conjunction with the inherent partial observability of interactive narratives,

gives rise to the Textual-SLAM problem, a textual variant of Simultaneous Localization

and Mapping (SLAM) (Thrun et al. 2005) problem of constructing a map while navigating

a new environment. In particular, because connectivity between locations is not necessarily

Euclidean, agents need to detect when a navigational action has succeeded or failed and

whether the location reached was previously seen or new. Beyond location connectivity,

it’s also helpful to keep track of the objects present at each location, with the understanding

that objects can be nested inside of other objects, such as food in a refrigerator or a sword

in a chest.

Due to the large number of locations in many games, humans often create structured

memory aids such as maps to navigate efficiently and avoid getting lost. The creation

of such memory aids has been shown to be critical in helping automated learning agents

operate in these textual worlds (Ammanabrolu and Riedl 2019b; Murugesan et al. 2020;

Adhikari et al. 2020; Ammanabrolu and Hausknecht 2020).

1.1.2 Commonsense Reasoning

Many real-world activities can be thought of as a sequence of sub-goals in a partially ob-

servable environment. These activities—getting ready to go to work, for example—are

considered trivial for humans because of commonsense knowledge. Commonsense knowl-

edge is defined as a set of facts, beliefs, and procedures shared among many people in the

same society or culture. However, to an agent learning purely by interacting with the en-

vironment, even simple tasks can require considerable trial-and-error. I hypothesize that

access to commonsense knowledge can enable an agent to more quickly converge on a

policy that completes common, everyday tasks. I further hypothesize that commonsense

knowledge can allow the agent to infer the presence of elements in the world when obser-

vations are noisy or fail.

Text-games cover a wide variety of genres, as mentioned earlier this ranges from slice
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of life simulators where the player makes a recipe in their home to mysteries and fairy

tales. This enables us to explore the question of how to adapt to domain-specific knowledge

which may contradict everyday commonsense. Take for example, an agent that knows that

knows how to cut vegetables with a knife. When placed in an environment without a knife,

it must adapt its cooking knowledge to account for this in order to still construct the recipe

successfully.

In order to effectively convey the core narrative or puzzle, text-adventure games make

ample use of prior commonsense and thematic knowledge. An everyday example could be

something as mundane as the fact that an axe can be used to cut wood, or that swords are

weapons. Different genres also have specific knowledge attached to them that wouldn’t nor-

mally be found in mundane settings, e.g. in a horror or fantasy game, we know that a coffin

is likely to contain a vampire or other undead monster or that kings are royalty and must be

treated respectfully. When a human enters a particular domain, they already possess priors

regarding the specific knowledge relevant to the situations likely to be encountered—this is

thematic commonsense knowledge that a learning agent must acquire to ensure successful

interactions.

This is closely related to the problem of transfer, the problem of acquiring and adapting

these priors in novel environments through interaction. In this sense, we can think of

commonsense knowledge as priors regarding environment dynamics. This problem space

can be explored using text-based games. What commonsense can be transferred between

two different environments, for example, a horror game and a mundane slice of life game?

How do you unlearn, or choose not to apply, a piece of commonsense that no longer fits

with the current world. What if the perceived environment dynamics change in novel ways?

E.g. some vampires actually love garlic instead of being allergic to them or you suddenly

find out that bread can be made without yeast and is known as sourdough—whole new

categories of recipes are now possible.
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1.1.3 Acting in Combinatorially-sized State-Action Spaces

Interactive narratives require the agent to operate in the combinatorial action space of nat-

ural language. To realize how difficult a game such as Zork1 is for standard reinforcement

learning agents, we need to first understand how large this space really is. In order to

solve a popular IF game such as Zork1 it’s necessary to generate actions consisting of up to

five-words from a relatively modest vocabulary of 697 words recognized by Zork’s parser.

Even this modestly sized vocabulary leads to O(6975) = 1.64× 1014 possible actions at

every step—a dauntingly-large combinatorially-sized action space for a learning agent to

explore. In comparison, board games such as chess and Go or Atari video games have

branching factors of the order of O(102).

1.1.4 Exploration

Most text-adventure games are structured as quests with high branching factors in which

players must solve a sequence of puzzles to advance the story and gain score—i.e. there

are usually multiple ways to finish a quest. To solve these puzzles, players have freedom

to a explore both new areas and previously unlocked areas of the game, collect clues, and

acquire tools needed to solve the next puzzle and unlock the next portion of the game. From

a Reinforcement Learning perspective, these puzzles can be viewed as bottlenecks that act

as partitions between different regions of the state space. Whereas the multiple pathways to

completion through puzzles may intuitively seem to make the problem easier, the opposite

is true. The bottlenecks set up a situation where agents get stuck because they do not see

the right action sequence enough times to be sufficiently reinforced. I contend that existing

Reinforcement Learning agents are unaware of such latent structure and are thus poorly

equipped for solving these types of problems.

Overcoming bottlenecks is not as simple as selecting the correct action from the bot-

tleneck state. Most bottlenecks have long-range dependencies that must first be satisfied:

Zork1 for instance features a bottleneck in which the agent must pass through the unlit Cel-
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lar where a monster known as a Grue lurks, ready to eat unsuspecting players who enter

without a light source. To pass this bottleneck the player must have previously acquired

and lit the lantern. Reaching the Cellar without acquiring the lantern results in the player

reaching an unwinnable state—the player is unable to go back and acquire a lantern but

also cannot progress further without a way to combat the darkness. Other bottlenecks don’t

rely on inventory items and instead require the player to have satisfied an external condition

such as visiting the reservoir control to drain water from a submerged room before being

able to visit it. In both cases, the actions that fulfill dependencies of the bottleneck, e.g.

acquiring the lantern or draining the room, are not rewarded by the game. Thus agents must

correctly satisfy all latent dependencies, most of which are unrewarded, then take the right

action from the correct location to overcome such bottlenecks. Consequently, most existing

agents—regardless of whether they use a reduced action space (Zahavy et al. 2018; Yuan

et al. 2018; Yin and May 2019a) or the full space (Ammanabrolu and Hausknecht 2020;

Hausknecht et al. 2020)—have failed to consistently clear these bottlenecks. It is only re-

cently that works have begun explicitly accounting for and surpassing such bottlenecks—

using a reduced action space and Monte-Carlo Planning (Jang et al. 2021) and full action

space and intrinsic motivation-based structured exploration (Ammanabrolu et al. 2020d).

While problems relating to long-term dependencies and sparse rewards are not unique

to text games alone, they are significantly complicated in this domain due to agents having

to simultaneously handle all the other challenges as well. As a result, even existing algo-

rithms designed for the current test beds of choice for these issues such as GoExplore for

the Atari game Montezuma’s Revenge (Ecoffet et al. 2021) face difficulties in overcoming

bottlenecks in this domain (Ammanabrolu et al. 2020d; Madotto et al. 2020).

1.1.5 Simultaneously Learning to Act and Speak

Some text-games extend the previous challenges even further by requiring agents to en-

gage in dialogue to progress in a task, increasing the space of possibilities exponentially
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Figure 1.3: The LIGHT (Urbanek et al. 2019) environment.

and bringing text environments closer to real-world situations. An example of such an

environment—designed explicitly as a research platform— is the large-scale crowdsourced

fantasy text-adventure game LIGHT (Urbanek et al. 2019), seen in Figure 1.3, where char-

acters can act and talk while interacting with other characters. It consists of of a set of

locations, characters, and objects leading to rich textual worlds in addition to quests demon-

strations of humans playing these quests providing natural language descriptions in varying

levels of abstraction of motivations for a given character in a particular setting.

On top of the other text-game related challenges, the primary core challenge for the

agent here is the recognition that dialogue can also be used to change the environment.

With dialogue, an agent can now learn to instruct or convince other characters in the world

to achieve the goal for it—e.g. convince the pirate through dialogue to give you their

treasure instead of just stealing it yourself. The agent needs to learn to balance both its

ability to speak as well as act in order to effectively achieve its goals (Ammanabrolu et al.

2021).
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1.2 Challenges of Generating Interactive Environments

A key consideration in modeling communication through a general purpose interactive

narrative solver is that an agent trained to solve these games is limited by the scenarios

described in them. Although the range of scenarios is vast, this brings about the question

of what the agent is actually capable of understanding even if it has learned to solve all

the puzzles in a particular game. Deep (reinforcement) learning systems tend to learn

to generalize from the head of any particular data distribution, the “common” scenarios,

and memorize the tail, the rarely seen cases. I contend that a potential way of testing an

AI system’s understanding of a domain is to use the knowledge it has gained in a novel

way and to create more instances of that domain. We can view this as storytelling—long

considered to be one of our most natural forms of communication (Boyd 2018).

From the perspective of interactive narratives, this involves automatically creating such

games—the flip side of the problem of creating agents that operate in these environments—

and requires anticipating how people will interact with these environments and conforming

to such expected commonsense norms to make a creative and engaging experience. Au-

tomated generation of text-adventure games can broadly be split into two considerations:

(1) the structure of the world, including the layout of rooms, textual description of rooms,

objects, and non-player characters; and (2) the quest, consisting of the partial ordering of

activities that the player must engage in to make progress toward the end of the game.

1.2.1 Quest Generation

The core experience in an interactive narrative revolves the quest, consisting of the par-

tial ordering of activities that an agent must engage in to make progress toward the end of

the game. Quest generation requires narrative intelligence and commonsense knowledge

as a quest must maintain coherence throughout while progressing towards a goal (Am-

manabrolu et al. 2020a). Each step of the quest follows logically from the preceding steps

10



much like the steps of a cooking recipe. A restaurant cannot serve a batch of cookies with-

out first gathering ingredients, preparing cooking instruments, mixing ingredients, etc. in a

particular sequence. Any generated quest that doesn’t follow such an ordering will appear

random or nonsensical to a human, betraying the AI’s lack of commonsense understanding.

1.2.2 World Generation

Maintaining quest coherence also means following the constraints of the given game world.

The quest has to fit within the confines of the world in terms of both genre and given

affordances—e.g. using magic in a fantasy world, placing kitchens next to living rooms

in mundane worlds, etc. This gives rise to the concept of world generation, the sec-

ond half of the automated game generation problem. This refers to generating the struc-

ture of the world, including the layout of rooms, textual description of rooms, objects,

and characters—setting the boundaries for how an agent is allowed to interact with the

world (Ammanabrolu et al. 2020b). Similarly to quests, a world violating thematically rel-

evant commonsense structuring rules will appear random to humans, providing us with a

metric to measure an AI system’s understanding.

1.3 Thesis Statement

This bring us to the thesis statement and how I propose to tackle all of these problems.

Structured contextualization, in the form of knowledge graphs, improves situated nat-

ural language generation and understanding in interactive environments as evaluated

by (1) the ability to operate in textual worlds, and (2) the perceived coherence and

creativity of procedurally generated language-based environments.

A core component of this thesis is generating and understanding language in situated—

or grounded—interactive environments. This requires an understanding of context, the

descriptions of the world must be interpreted and language generated accordingly. Struc-

turing this context in the form of a knowledge graph aid in each of the challenges discussed
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so far. This work is structured into three parts:

Part 1: Operating in Textual Worlds. In this part I focus on creating agents that can

learn to act and speak in interactive narratives, highlighting the effectiveness of knowledge

graphs. First, I show that graphs provide knowledge representations containing a persistent

memory—letting us overcome the challenge of partially observable state spaces (Chap-

ter 3). Combinatorially-large natural language action spaces can be constrained based on

information contained withing an agent’s knowledge graph (Chapter 4). Chapter 5 extends

our ability to explore combinatorially-sized spaces by exploiting the latent, underlying de-

pendency graph structure of these POMDPs via knowledge graph-based intrinsic motiva-

tion. These graphs let us seed agents with external commonsense knowledge as well as to

transfer prior commonsense and thematic knowledge that they have learned (Chapter 6).

Chapter 7 builds on these challenges by looking the question of how to balance dual act-

speech spaces by learning to simultaneously perform goal-driven, situated dialogue while

also acting. The challenges measure an agent’s ability to operate in a interactive textual

environment and so are evaluated based on game-playing ability—i.e. how well an agent

can complete a given text-adventure game.

Part 2: Generating Textual Worlds. On the game generation side of things, we factorize

the problem into the problems of world and quest generation. Graph representations let us

structure and develop textual worlds that align with thematic and everyday commonsense

priors (Chapter 8) and let us ground objectives—or quests—into these worlds (Chapter 9).

These challenges in game generation are evaluated by humans in terms of how creative and

coherent they perceive the generated environments to be.

Part 3: Putting it all together. Chapter 10 ties both the game playing and game gener-

ation lines of research together by proposing a method to train agents to act and speak via

natural language using curriculums of procedurally generated textual environments.
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CHAPTER 2

BACKGROUND AND PRIOR WORK

This chapter first provides a background on the formal definition of text games as applied

to interactive, learning setting and the two primary frameworks used through the rest of this

dissertation. I then sketch related work in this area both in the realms of game-playing and

game-generation.

2.1 Frameworks

2.1.1 Background

Formally, text-adventure games can be defined as Partially-Observable Markov Decision

Processes (Hausknecht et al. 2020; Côté et al. 2018). A game can be represented as a

7-tuple of 〈S, T,A,Ω, O,R, γ〉 representing the set of environment states, mostly deter-

ministic conditional transition probabilities between states, the vocabulary or words used

to compose text commands, observations returned by the game, observation conditional

probabilities, reward function, and the discount factor respectively. At every step, an agent

receives an observation from the environment, then chooses an action to perform and re-

ceives an updated observation from the game engine.

I have also aided in the development of the primary open-source platforms and base-

line benchmarks in this field: Jericho a learning environment for human-made interactive

narrative games; and LIGHT a large-scale crowdsourced multi-user text-game for studying

situated dialogue—each resulting in hundreds of stars and forks on GitHub and dozens of

agents. These are used through the rest of this dissertation.
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2.1.2 Jericho

Jericho is an open-source1 Python-based interactive narrative environment, which provides

an OpenAI-Gym-like interface (Brockman et al. 2016) for learning agents to connect with

interactive narrative games. Jericho is intended for reinforcement learning agents, but also

supports the ability to load and save game states, enabling planning algorithms Monte-

Carlo Tree Search (Coulom 2007) as well as reinforcement learning approaches that rely

on the ability to restore state such as Backplay (Resnick et al. 2018) and GoExplore (Ecoffet

et al. 2021). Jericho additionally provides the option to seed the game’s random number

generator for replicability.2

Jericho supports a set of human-made interactive narrative games that cover a vari-

ety of genres: dungeon crawl, Sci-Fi, mystery, comedy, and horror. Games were selected

from classic Infocom titles such as Zork and Hitchhiker’s Guide to the Galaxy, as well

as newer, community-created titles like Anchorhead and Afflicted. Supported games use

a point-based scoring system, which serves as the agent’s reward. Beyond the set of sup-

ported games, unsupported games may be played through Jericho, without the support of

score detection, move counts, or world-change detection. There exists a large collection of

over a thousand unsupported games3, which may be useful for unsupervised pretraining or

intrinsic motivation.

Template-Based Action Generation I introduce a novel template-based action space

in which the agent first chooses an action template (e.g. put in ) and then fills in the blanks

using words from the parser’s vocabulary. Notationally, I employ u ⇐ w1, w2 to denote

the filling of template u with vocabulary words w1, w2. Jericho provides the capability to

extract game-specific vocabulary and action templates. These templates contain up to two

blanks, so a typical game with 200 templates and a 700 word vocabulary yields an action

1Jericho is available at https://github.com/Microsoft/jericho.
2Most interactive narrative games are deterministic environments. Notable exceptions include Anchor-

head and Zork1.
3https://github.com/BYU-PCCL/z-machine-games
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space of O(T V2) ≈ 98 million, three orders of magnitude smaller than the 240-billion

space of 4-word actions using vocabularly alone.

World Object Tree The world object tree4 is a semi-interpretable latent representation

of game state used to codify the relationship between the objects and locations that popu-

late the game world. Each object in the tree has a parent, child, and sibling. Relationships

between objects are used to encode posession: a location object contains children corre-

sponding to the items present at that location. Similarly, the player object has the player’s

current location as a parent and inventory items as children. Possible applications of the

object tree include ground-truth identification of player location, ground-truth detection of

the objects present at the player’s location, and world-change-detection.

Identifying Valid Actions Valid actions are actions recognized by the game’s parser

that cause changes in the game state. When playing new games, identifying valid actions

is one of the primary difficulties encountered by humans and agents alike. Jericho has the

facility to detect valid actions by executing a candidate action and looking for resulting

changes to the world-object-tree. However, since some changes in game state are reflected

only in global variables, it’s rare but possible to experience false negatives. In order to

identify all the valid actions in a given state, Jericho uses the following procedure:

Handicaps In summary, to ease the difficulty of interactive narrative games, Jericho

optionally provides the following handicaps: 1) Fixed random seed to enforce determinism.

2) Use of Load, Save functionality. 3) Use of game-specific templates U and vocabulary

V . 4) Use of world object tree as an auxillary state representation or method for detecting

player location and objects. 5) Use of world-change-detection to identify valid actions. For

reproducibilty, I report the handicaps used by all algorithms in this chapter and encourage

future work to do the same.
4More on game trees https://inform-fiction.org/zmachine/standards/z1point1/index.html.
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Algorithm 1 Procedure for Identifying Valid Actions
1: E ← Jericho environment
2: T ← Set of action templates
3: o← Textual observation
4: P ← {p1 . . . pn} Interactive objects identified with noun-phrase extraction or world

object tree.
5: Y ← ∅ List of valid actions
6: s← E .save() – Save current game state
7: for template u ∈ T do
8: for all combinations p1, p2 ∈ P do
9: Action a← u⇐ p1, p2

10: if E .world changed(E .step(a)) then
11: Y ← Y ∪ a
12: E .load(s) – Restore saved game state

return Y

2.1.3 LIGHT

This section first provides a brief overview of the LIGHT game environment, followed by

descriptions of the LIGHT-Quests and ATOMIC-LIGHT datasets used in this chapter.

The LIGHT game environment is a multi-user fantasy text-adventure game consisting

of a rich, diverse set of characters, locations, and objects (1775 characters, 663 locations,

and 3462 objects). Characters are able to perform templated actions to interact with both

objects and characters, and can speak to other characters through free form text. Actions

in text games generally consist of verb phrases (VP) followed optionally by prepositional

phrases (VP PP). For example, get OBJ, put OBJ, give OBJ to CHAR, etc.. There are 13

types of allowed verbs in LIGHT. These actions change the state of the world which is

expressed to the player in the form of text descriptions.

Figures 2.1, 2.2, and 2.3 summarize the data that I collected for LIGHT-Quests. Data is

collected via crowdsourcing in two phases, first the quests then demonstration of humans

playing them. During the first phase, crowdworkers were given a setting, i.e. situated in a

world, in addition to a character and its corresponding persona and asked to describe in free

form text what potential motivations or goals could be for that character in the given world.

The kind of information given to the crowdworkers is seen in Figure 2.1. Simultaneously,
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Setting You are in the Dangerous Precipice. The dangerous precipice overlooks the valley below. The ground slopes down to
the edge here. Dirt crumbles down to the edge of the cliff. There’s a dragon crescent, a knight’s armor, a golden dragon
egg, and a knight’s fighting gear here. A knight is here.You are carrying nothing.

Partner: Knight.
Persona I am a knight. I come from a lower-ranking noble family. I serve under the king, as my father did before me. In times

of war, I fight on horseback.
Carrying knight’s armor, golden dragon egg, knight’s fighting gear
Self: A dragon.
Persona I am a dragon living in the mountains. I enjoy hoarding treasure. I terrorize the local populace for fun.

Carrying Nothing.

Figure 2.1: Setting and character information for both self and partner characters as taken
from LIGHT.

Motivations: Timeline:
-4 hours go to dangerous precipiceShort I need to recover the dragon egg that was stolen and punish the knight. -15 min get knights armor from knight
-10 min get golden dragon egg

Now hit knightMid I need to return the golden dragon egg to my treasure hoard.
+5 min put dragon egg on back

+15 min eat the knightLong I need to build the largest hoard ever attained by any one dragon. +2 hours go to the mountains

Figure 2.2: Motivations with different levels of abstractions and corresponding sequence
of timeline actions in chronological order for the self character in LIGHT-Quests. There
are 7486 quests in total.

Insssssolent pessst! I should immolate you for this tresssspasss.

And why is that, dragon?

Ssstealing my preccciousss golden egg! I’ll tell you what, I’ll give you 10 sssseconds to amussse me with your sssstory and THEN
I’ll burn you alive!

You said you wanted to attack me, dragon, did you not?

Go ahead, I’m lisssssstening.
get golden dragon egg

Now now! I would have given you that had you asked!

Assssssk for my own property back? What a riduculousss notion

Look here, I told you to watch your mouth and you didn’t, so leave or I’ll make you leave.

And now threatsss! Thisss is proving to be a mossst engaging conversssation.
hit knight

Give my regardsss to the valley floor below!

Figure 2.3: Example of a demonstration of a human (blue shaded) completing the above
quest while role-playing as the self character with a partner agent (grey shaded). There are
2111 such human demonstrations of average sequence length 12.92, consisting of 22672
dialogues in total.

they were also asked to provide a sequence of seven timeline actions—one action that needs

to be completed now and three before and after at various user-defined intervals—for how

the character might go about achieving these motivations.

Given the information in Figure 2.1, the crowdworkers completed the above outlined

tasks and produce data as seen in Figure 2.2. Motivations come in three levels of abstraction—

short, mid, and long—corresponding to differing amounts of the timeline. For example, the
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short motivation is always guaranteed to correspond most closely to the now position on

the timeline. Action annotation is pre-constrained based on the classes of verbs available

within LIGHT. The rest of the action is completed as free form text as it may contain novel

entities introduced in the motivations. There are 5982 training, 756 validation, and 748 test

quests. Further details regarding the exact data collection process and details of LIGHT-

Quests are found in Appendix B.4.

After collecting motivation and timelines for the quests, I deployed a two-player version

of the LIGHT game, letting players attempt the quests for themselves in order to collect hu-

man demonstrations. Figure 2.3 shows an example human expert demonstration of a quest.

Players were given a character, setting, motivation, and a partner agent and left to freely act

in the world and talk to the partner in pursuit of their motivations. The partner agent is a

fixed poly-encoder transformer model (Humeau et al. 2020) trained on the original LIGHT

data as well as other human interactions derived via the deployed game—using 111k utter-

ances in total. Players first receive a role-playing score on a scale of 1-5 through a Dungeon

Master (DM), a learned model that ranks how likely their utterances are given the current

context. Once they have accumulated a score reaching a certain threshold, they are allowed

to perform actions. I employ this gamification mechanism to encourage players to role-play

their character persona and its motivations, leading to improved user experience and data

quality (Horsfall and Oikonomou 2011). They are then given further reward if the actions

they perform sequentially match those on the timeline for the given quest. The game ends

after a maximum of six turns of dialogue per agent, i.e. twelve in total. The average se-

quence of a human demonstration is 12.92, with an average action sequence length of 2.18

and dialogue of 10.74. There are 1800 training, 100 validation, and 211 test human expert

demonstrations after the data was filtered. Additional details and examples are found in

Appendix B.4.1.
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2.2 Related Work on Language-Based Agents

Currently, three primary open-source platforms and baseline benchmarks have been devel-

oped so far to help measure progress in this field: Jericho (Hausknecht et al. 2020)5 a learn-

ing environment for human-made interactive narrative games; TextWorld (Côté et al. 2018)6

a framework for procedural generation in text-games; and LIGHT (Urbanek et al. 2019)7

a large-scale crowdsourced multi-user text-game for studying situated dialogue. Further

extensions and adaptation to some of these benchmarks have been proposed for use in

neighboring domains such as vision-and-language navigation (Shridhar et al. 2021), com-

monsense reasoning (Murugesan et al. 2021), and procedural text understanding (Tamari

et al. 2021). In this dissertation, we focus on the first three mentioned.

Text Game Playing. In contrast to the parser-based games studied in this dissertation,

choice-based games provide a list of possible actions at each step, so learning agents must

only choose between the candidates. The DRRN algorithm for choice-based games (He et

al. 2016a; Zelinka 2018) estimates Q-Values for a particular action from a particular state.

This network is evaluated once for each possible action, and the action with the maximum

Q-Value is selected. While this approach is effective for choice-based games which have

only a handful of candidate actions at each step, it is difficult to scale to parser-based games

where the action space is vastly larger.

In terms of parser-based games, such as the ones examined in this dissertation, several

approaches have been investigated: LSTM-DQN (Narasimhan et al. 2015), considers verb-

noun actions up to two-words in length. Separate Q-Value estimates are produced for each

possible verb and object, and the action consists of pairing the maximally valued verb

combined with the maximally valued object. LSTM-DQN was demonstrated to work on

two small-scale domains, but human-made games, such as those studied in this chapter,

represent a significant increase in both complexity and vocabulary. This bifurcation of

5https://github.com/microsoft/jericho
6https://github.com/microsoft/textworld
7https://parl.ai/projects/light
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value estimates allows the agent to reason about exponentially fewer actions, at the risk of

selecting poorly matched verb-object pairs.

One approach to affordance extraction (Fulda et al. 2017) identified a vector in word2vec

(Mikolov et al. 2013) space that encodes affordant behavior. When applied to the noun

sword, this vector produces affordant verbs such as vanquish, impale, duel, and battle. The

authors use this method to prioritize verbs for a Q-Learning agent to pair with in-game

objects.

An alternative strategy has been to reduce the combinatorial action space of parser-

based games into a discrete space containing the minimum set of actions required to fin-

ish the game. This approach requires a walkthrough or expert demonstration in order

to define the space of minimal actions, which limits its applicability to new and unseen

games. Following this approach, Zahavy et al. (2018) employ this strategy with their

action-elimination network, a classifier that predicts which predefined actions will not ef-

fect any world change or be recognized by the parser. Masking these invalid actions, the

learning agent subsequently evaluates the set of remaining valid actions and picks the one

with the highest predicted Q-Value.

The TextWorld framework (Côté et al. 2018) supports procedural generation of parser-

based interactive narrative games, allowing complexity and content of the generated games

to be scaled to the difficulty needed for research. TextWorld domains have already proven

suitable for reinforcement learning agents (Yuan et al. 2018) which were shown to be ca-

pable of learning on a set of environments and then generalizing to unseen ones at test

time. Recently, Yuan et al. (2019) proposed QAit, a set of question answering tasks based

on games generated using TextWorld. QAit focuses on helping agents to learn procedural

knowledge in an information-seeking fashion, it also introduces the practice of generating

unlimited training games on the fly. With the ability to scale the difficulty of domains,

TextWorld enables creating a curriculum of learning tasks and helping agents eventually

scale to human-made games.
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In the case of human-made text games, however, knowledge graphs—not directly pro-

vided by existing text game learning frameworks—have been shown to be superior state

representations when compared to just the textual observations by themselves. They aid in

the challenges of partial observability/knowledge representation (Ammanabrolu and Riedl

2019b; Adhikari et al. 2020; Sautier et al. 2020), combinatorial state-action spaces (Am-

manabrolu and Hausknecht 2020; Ammanabrolu et al. 2020d), and commonsense reason-

ing (Ammanabrolu and Riedl 2019b; Murugesan et al. 2020, 2021; Dambekodi et al. 2020).

These rest of the chapters in this dissertation will go explicitly into detail on the uses of

knowledge graphs in text games.

Transfer. Work in transfer in reinforcement learning has explored the idea of trans-

ferring skills (Konidaris and Barto 2007; Konidaris et al. 2012) or transferring value func-

tions/policies (Liu and Stone 2006). Other approaches attempt transfer in model-based

reinforcement learning (Taylor et al. 2008; Nguyen et al. 2012; Gasic et al. 2013; Wang

et al. 2015; Joshi and Chowdhary 2018), though traditional approaches here rely heavily

on hand crafting state-action mappings across domains. Narasimhan et al. (2017) learn

to play games by predicting mappings across domains using a both deep Q-networks and

value iteration networks, finding that that grounding the game state using natural language

descriptions of the game itself aids significantly in transferring useful knowledge between

domains.

In transfer for deep reinforcement learning, Parisotto et al. (2016) propose the Actor-

Mimic network which learns from expert policies for a source task using policy distillation

and then initializes the network for a target task using these parameters. Yin H. and Pan

(2017) also use policy distillation, using task specific features as inputs to a multi-task

policy network and use a hierarchical experience sampling method to train this multi-task

network. Similarly, Rusu et al. (2016) attempt to transfer parameters by using frozen pa-

rameters trained on source tasks to help learn a new set of parameters on target tasks.

Rajendran et al. (2017) attempt something similar but use attention networks to transfer
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expert policies between tasks. These works, however, do not study the requirements for

enabling efficient transfer for tasks rooted in natural language, nor do they explore the use

of knowledge graphs as a state representation.

Exploration strategies. Jain et al. (2019) extend consistent Q-learning (Bellemare et

al. 2016) to text-games, focusing on taking into account historical context. In terms of

exploration strategies, Yuan et al. (2018) detail how counting the number of unique states

visited improves generalization in unseen games. Madotto et al. (2020) use the GoEx-

plore (Ecoffet et al. 2021) to specifically explore text games using valid action handicaps.

Similarly, Jang et al. (2021) use valid action handicaps and linguistic priors to selectively

perform rollouts using Monte Carlo Tree Search.

Curriculum Learning. Curricula in reinforcement learning have traditionally been

used to set goals of steadily increasing difficulty for an agent (Bengio et al. 2009; Schmid-

huber 2013). The difficulty of these curricula are generally measured difficulty via proxy

of agent performance (Narvekar et al. 2020). Given this measure most methods either

choose to adversarially set steadily goals of increasing difficulty (Sukhbaatar et al. 2018;

Racaniere et al. 2019; Campero et al. 2021) or to maximize learning performance based

on environment instances an agent finds difficult historically (Graves et al. 2017; Portelas

et al. 2020). While we were inspired by these works, they all focus on searching for goals

for agents which can be difficult to scale to complex tasks such our own natural language

motivation-based goals.

Goal oriented Dialogue This form of dialogue has traditionally been closely related to

specific tasks useful in the context of personal assistants with dialogue interfaces (Hender-

son et al. 2014; El Asri et al. 2017). RL has been studied for such tasks, usually to improve

dialogue state management (Singh et al. 2000; Pietquin et al. 2011; Fatemi et al. 2016) and

to improve response quality (Li et al. 2016). In particular, the negotiation tasks of Yarats

and Lewis (2017) and Lewis et al. (2017), where two agents are trying to convince each

other to perform certain actions, are related to the tasks in LIGHT-Quests. These works all

22



lack environment grounding and the notion of diverse agent motivations.

Commonsense reasoning in language. Trabasso and Broek (1985) as well as Graesser

et al. (1991) introduce psychological theories relating commonsense reasoning with causal-

ity in natural language stories, wherein what is regarded as commonsense is based on the

“why” and “how” of the activities a certain character needs to perform to reach goals con-

sistent with their motivations. Works such as Bosselut et al. (2019) and Guan et al. (2020)

focus on pre-training transformer-based language learning systems with large-scale com-

monsense knowledge graphs such as ATOMIC (Sap et al. 2019) and ConceptNet (Speer

and Havasi 2012) for use in knowledge graph completion and story ending generation re-

spectively. Murugesan et al. (2020), Ammanabrolu et al. (2020d), Fulda et al. (2017),

Dambekodi et al. (2020), and Ammanabrolu and Riedl (2019a) look at commonsense rea-

soning in interactive environments, with the former focusing on affordance extraction us-

ing word embeddings and the latter three on transferring text-game playing skills via pre-

training using question-answering and large-scale knowledge graphs.

Language-informed reinforcement learning. Luketina et al. (2019) provide an overview

of RL informed by natural language. Of these works, the ones most related to ours are those

falling into the category of instruction following—where an agent’s tasks are defined by

high level instructions describing desired policies and goals (MacMahon et al. 2006; Kol-

lar et al. 2010). Visual and embodied agents using natural language instructions (Kolve et

al. 2017; Bisk et al. 2016; Anderson et al. 2018) or in language-based action spaces (Das

et al. 2017) utilize interactivity and environment grounding but have no notion of agent

motivations, nor make any attempt to explicitly model commonsense reasoning.

World Models. World modeling via model-based reinforcement learning often serves

to learn transition models of an environment to allow for simulation without actually inter-

acting with the environment (Arulkumaran et al. 2017). Ha and Schmidhuber (2018) use

Variational Autoencoders (VAEs) combined with recurrent neural networks to learn com-

pressed state representations over time of visual reinforcement learning environments (Brock-
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man et al. 2016). This model is then used to simulate an environment and learn a control

policy in it. Other contemporary works attempt to also learn dynamics models using raw

pixels in the context of games such as Atari (Oh et al. 2015; Kipf et al. 2020), and Su-

per Mario Bros. (Guzdial et al. 2015) as well as 3D simulations (Kipf et al. 2020) and

robotics (Watter et al. 2015; Wahlström et al. 2015). We note that in all of these works,

in addition to the state space being raw pixels—the action space is fixed and orders of

magnitude smaller than in text games.

2.3 History of Text-Game Generation

Outside of this, there has been some work on learning to create content in the context

of interactive narrative. These systems mainly work to overcome a significant bottleneck

in the form of the human authoring required to create such works. Permar and Magerko

(2013) present a method of generating cognitive scripts required for freeform activities in

the form of pretend play. Specifically, they use interactive narrative—a form of pretend play

that requires a high level of improvisation and creativity and uses cognitive scripts acquired

from multiple experience sources. They take existing cognitive scripts and blend them in

the vein of more traditional conceptual blending (Veale et al. 2000; Zook et al. 2011) to

create new blended scripts. Closely related is (Magerko and O’Neill 2012) who present a

Co-Creative Cognitive Architecture (CoCoA), detailing the set of components that support

the design of co-creative agents in the context of interactive narrative. These methods all

follow singular cognitive models that do not learn to generate content automatically.

Li et al. (2012) present Scheherazade, a system which learns a plot graph based on sto-

ries written by crowd sourcing the task of writing short stories through Amazon Mechanical

Turk. This plot graph contains details relevant for the coherence of the story and includes:

plot events, temporal precedence, and mutual exclusion relations. The generated narrative

contains events that can be executed from this plot graph by both players and non-player

characters. Guzdial et al. (2015) introduce Scheherazade-interactive narrative, a system
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that learns to generate choose-your-own-adventure style interactive fictions in which the

player chooses from prescribed options. More recently, Martin et al. (2017) introduce a

pipeline systems for improvisational storytelling agents capable of collaboratively creating

stories. These agents first focus on creating a plot for the story and then expand that plot

into natural language sentences.

Giannatos et al. (2011) use genetic algorithms to create new story plot points for an

existing game of interactive fiction using an encoding known as a precedence-constraint

graph. This graph gives the system information regarding the ordering of events that must

happen in the game in order to advance. They demonstrate the workings of their system

by generating additional content for the popular interactive fiction game Anchorhead, and

show that this can be integrated into the original game.

The Game Forge system (Hartsook et al. 2011) also uses genetic algorithms to generate

a game world and plot line for related type of game, a computer role playing game (CRPG).

This work focuses on generating layouts and plot structures to create novel game worlds

through with a fitness function based on a transition graph that encodes pre-built game

requirements. Tamari et al. (2019) focus on extracting action graphs for sequential decision

making problems such as material science experiments and turn them into text-adventure

games. Fan et al. (2019) leverage LIGHT (Urbanek et al. 2019)—a crowdsourced dataset

of fantasy text-adventure dialogues—to learn to generate interactive fiction worlds on the

basis of locations, characters, and objects.
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CHAPTER 3

MODELING PARTIALLY OBSERVABLE WORLDS

In this chapter, I focus on one of the core challenges faced by learning agents in these

environments—as identified earlier—knowledge representation.

The knowledge representation challenge rises from the fact that interactive narratives

span many distinct locations, each with unique descriptions, objects, and characters. Play-

ers move by issuing navigational commands, which can convey Euclidean space like go

West or non-Euclidean span like step into portal, warping the agent to an entirely new sec-

tion of the world. To cope with such challenges, humans often create structured memory

aids such as hand drawn maps when attempting to play these games. A good knowledge

representation can assist with long-term action dependencies that often arise in game quests

(as well as real world environments). An example of a long-term dependency is a key be-

ing found in one location that opens a lock on a chest in an entirely different section of the

map. For an agent to learn this relationship, it must be able to replicate the sequence of

picking up the key and unlocking the chest while not being distracted by interstitial actions

and states.

The knowledge representation challenges inherent to interactive narrative games give

rise to the Textual-SLAM problem, a textual variant of Simultaneous Localization And

Mapping (SLAM) (Thrun et al. 2005) problem of constructing a map by inferring infor-

mation from one’s surroundings while navigating a novel environment. As in humans,

the creation of such world models or memory aids in agents—in the form of knowledge

graphs—has been shown to be critical in helping automated learning agents operate in

these textual worlds (Ammanabrolu and Riedl 2019b; Murugesan et al. 2020; Adhikari et

al. 2020; Ammanabrolu and Hausknecht 2020).

I approach this problem of knowledge representation as a world modeling problem.
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West of House 
You are standing in an open field west of a white
house, with a boarded front door. There is a small
mailbox here.
Leaflet taken.
You are empty-handed
Prev act: take leaflet
Valid acts: go north, go south, go west, open mailbox

North of House 
You are facing the north side of a white house. There is
no door here, and all the windows are boarded up. To the
north a narrow path winds through the trees.
You are carrying: a small leaflet
Prev act: go north
Valid acts: go north, go east, go west, drop leaflet

North of
House
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You
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mailbox

house open-

able

in

is

has
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window
has

go north

Key:
Locations

Inv. Obj.s
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haveYou
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mailbox
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Figure 3.1: Two subsequent states in Zork1 consisting of: textual observations, world
knowledge graphs, valid actions, and actions taken.

World models, often in the form of probabilistic generative models, are used in conjunction

with model-based reinforcement learning to improve a learning agent’s ability to operate in

various environments (Sutton and Barto 1998; Arulkumaran et al. 2017). They are inspired

by human cognitive processes (Jancke 2000), with a key hypothesis being that the ability

to predict how the world will change in response to one’s actions will help you better plan

what actions to take (Ha and Schmidhuber 2018). Evidence towards this hypothesis comes

in the form of studies showing that simulating trajectories using internal learned models

of the world improves sample efficiency in learning to operate in an environment (Ha and

Schmidhuber 2018; Schrittwieser et al. 2019).

I show that a state representation in the form of a knowledge graph gives us the ability to

not only map a textual world but also act more effectively in it. A knowledge graph captures

the relationships between entities as a directed graph. The knowledge graph provides a

persistent memory of the world over time and enables the agent to have a prior notion of

what actions it should not take at a particular stage of the game.

3.1 Knowledge Graphs for POMDPs

Knowledge graphs have been demonstrated to improve natural language understanding in

other domains outside of text adventure games. For example, Guan et al. (2018) use com-
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monsense knowledge graphs such as ConceptNet (Speer and Havasi 2012) to significantly

improve the ability of neural networks to predict the end of a story. They represent the

graph in terms of a knowledge context vector using features from ConceptNet and graph

attention (Veličković et al. 2018). The state representation that I have chosen as well as my

method of action pruning builds on the strengths of existing approaches while simultane-

ously avoiding the shortcomings of ineffective exploration and lack of long-term context.

In my approach, my agent learns a knowledge graph, stored as a set of RDF triples, i.e.

3-tuples of 〈subject, relation, object〉. For example, from a phrase such as “There is an

exit to the north” one can infer a has relation between the current location and the direction

of the exit. The resultant knowledge graph gives the agent what essentially amounts to a

mental map of the game world. The knowledge graph is updated after every agent action

(see Figure 3.1). A special node—designated “you”—represents the agent and relations

out of this node are updated after every action with the exception of relations denoting the

agent’s inventory. Other relations persist after each action.

3.1.1 JerichoWorld Dataset

In order to learn these knowledge graphs, I introduce and use the JerichoWorld Dataset.1 It

contains 24,198 mappings between rich natural language observations and: (1) knowledge

graphs in the form of a set of tuples 〈s, r, o〉 (such that s is a subject, r is a relation, and o

is an object) that reflect the world state in the form of a map; (2) a set of natural language

actions that are guaranteed to cause a change in that particular world state. An example

of the mapping between rich natural language observations and structured knowledge is

illustrated in Figure 3.1. The training data is collected across 27 text games in multiple

genres and contains a further 7,836 heldout instances over 9 additional games in the test

set.

Each instance of the dataset takes the form of a tuple of the form 〈St, A, St+1, R〉 where

1https://github.com/JerichoWorld/JerichoWorld
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St and St+1 are two subsequent states with A being the action used to transition between

states and R the observed reward. As mentioned earlier, each of the states in the tuple

contain information regarding the observation Ot ∈ St, ground truth knowledge graph

Gt ∈ St, and valid actions for that state Vt ∈ St. This data was collected by oracle

agents, i.e. agents that can perfectly solve a game, exploring using a mix of an oracle and

random policy to ensure high coverage of a game’s state space. Game walkthroughs are

texts describing the solutions to games, generally retrieved from the internet, but already

part of the Jericho framework. Walkthroughs, however, only present one possible solution

to a game and solve all the core puzzles required to complete a game with the maximum

possible score.

To achieve greater coverage of the game’s state space, my data collection agent stops

off to explore by executing random valid actions for n steps before resetting to the walk-

through. One such collected state—a part of the full tuple mentioned—is detailed below.

The textual observations consist of descriptions of the location and inventory as well as

the game engine response to the previous action performed. For example:

Game: ztuu

Location: Cultural Complex This imposing ante-room, the center of what was apparently the

cultural center of the GUE, is adorned in the ghastly style of the GUE’s "Grotesque

Period." With leering gargoyles, cartoonish friezes depicting long-forgotten scenes of

GUE history, and primitive statuary of pointy-headed personages unknown (perhaps very

, very distant progenitors of the Flatheads), the place would have been best left

undiscovered. North of here, a large hallway passes under the roughly hewn inscription

"Convention Center." To the east, under a fifty-story triumphal arch, a passageway

the size of a large city boulevard opens into the Royal Theater. A relatively small

and unobtrusive sign (perhaps ten feet high) stands nearby. South, a smaller and more

dignified (i.e. post-Dimwit) path leads into what is billed as the "Hall of Science."

You can see a pair of razor-like gloves here.

Observation: You put on the razor-like gloves.

Inventory:

You are carrying:

a brass lantern (providing light)

a pair of glasses

four candy bars:
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a ZM$100000

a Multi-Implementeers

a Forever Gores

a Baby Rune

a cheaply-made sword

Prev Act: put on gloves

I further provide the set of objects that are found in both the agent’s inventory and sur-

roundings, including textual descriptions for each of the objects. Attributes for each of

these objects are also included are acquired by decompiling the games, following (Am-

manabrolu et al. 2020d). For example:

Inventory Objects:

candy: Which do you mean, the ZM$100000, the Multi Implementeers, the Forever Gores or

the Baby Rune?

Implementeers: The profiles on the wrapper of this delicacy look more like Moe, Larry,

and Curly than those of your favorite Implementeers (presumably, Marc, Mike, and

David.)

Forever/Gores: The wrapper of this bar pictures the Milky Way, but the stars are all

blood red. Kids love them.

sword: This is a cheaply made sword of no antiquity whatsoever. With regard to grues or

other underworldly denizens, your weapon is as likely to engender laughter as fear

.

rune: The label is covered with mystical runes, the meanings of which elude you.

glasses: The owner of these glasses had an indeterminate vision problem, because the

lenses have both been crushed underfoot. The vision problem, of course, has been

solved.

lantern: The lantern, while of the cheapest construction, appears functional enough for

the moment. Your best hope is that it stays that way. It looks like the lamp has

gone through a few cycles of impact revitalization.

Inventory Attributes:

glasses: clothing

gloves: clothing

sword: animate, equip

lantern: animate, equip

Surrounding Objects:

gargoyles: Unless you are inordinately masochistic, the less time spent examining the

artwork, the better.

east: You see nothing special about the east wall.

tunnel: The tunnel leads west.

30



gloves: The razor like gloves would be very attractive for an axe murderer. And they’re

just your size.

south: You see nothing special about the south wall.

sign: The sign indicates today’s performance, which (in honor of the festivities in the

Convention Center) is "A Massacre on 34th Street."

Surrounding Attributes:

gloves: clothing

tunnel: animate

sign: animate

I further provide the ground truth knowledge graph representing the world state corre-

sponding to these textual observations. The ground truth knowledge graph is a set of tuples

〈s, r, o〉 such that s is a subject, r is a relation, and o is an object. It reflects information

on the current state such as objects and attributes and is extracted from the game engine by

traversing the engine’s internal representation and converting it to human readable form.

Relations are defined on the basis of traversal operations in the game engine’s internal rep-

resentation, e.g. “in” and “have” signify parent-child ownership for locations and inventory

respectively. For example:

Graph: [sign, in, Cultural Complex], [you, have, Forever Gores], [you, have, ZM$100000], [

you, have, Baby Rune], [tunnel, in, Cultural Complex], [you, in, Cultural Complex], [

you, have, brass lantern], [you, have, glasses], [decoration, in, Cultural Complex], [

you, have, cheaply-made sword], [you, have, Multi-Implementeers], [you, have, razor-

like gloves], [glasses, is, clothing], [gloves, is, clothing], [sword, is, animate], [

tunnel, is, animate], [sign, is, animate], [lantern, is, animate], [sword, is, equip],

[lantern, is, equip]

Valid actions are defined by Hausknecht et al. (2020) as the set of actions guaranteed to

cause a change in the current world state and are identified by the Jericho framework. For

example in one particular state me might have the following valid actions:

Valid Actions: west, turn lantern off, east, south, put multi down, put forever down, put

lantern down, put rune down, put glasses down, put sword down, take razor off, put on

glasses, examine glasses, lower razor, throw multi, throw lantern, put multi in

glasses, north

Tasks. Given this dataset, I focus on two tasks within it as formally defined by Jeri-

choWorld. A successful world model will be able to accomplish both of these tasks.
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Figure 3.2: The transformation between subsequent world knowledge graphs Gt and Gt+1

based on the states in Figure 3.1. The green (Gr) outlined portions in the center are additions
to Gt to get Gt+1 (i.e. Gt+1 −Gt) and the red (R) portions similarly represent deletions to
Gt (i.e. Gt −Gt+1).

1. Knowledge Graph Generation: this task involves predicting the graph at time step

t + 1 : Gt+1 ∈ St+1 given the textual observations, valid actions, and graph at time

step t : Ot, Vt, Gt ∈ St, and action A for all samples in the dataset.

2. Valid Action Generation: this task is formally defined as predicting the set of se-

quences of valid actions at time step t+1 : Vt+1 ∈ St+1 given the textual observations,

valid actions, and graph at time step t : Ot, Vt, Gt ∈ St, and action A for all samples

in the dataset.

3.2 The Worldformer

This section describes the core methodological contributions of my work in creating world

models for text games. I first show how knowledge graph generation can be simplified

to predicting the graph difference between agent steps. I then describe the Worldformer,

a transformer-based architecture, and end-to-end training method—including an objective

function—that treats both of the world modeling tasks as a Set of Sequences generation

problem.
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3.2.1 Knowledge Graph Difference Generation

Figure 3.2 describes the gist of my simplification of the knowledge graph generation prob-

lem. Recall that knowledge graphs are directed graphs that are stored the form of a set of

tuples as 〈s, r, o〉 such that s is a subject, r is a relation, and o is an object. Let the knowl-

edge graphs representing the world state at two subsequent steps be Gt and Gt+1. At every

step, tuples are either added or deleted from the graph Gt to update the belief state about

the world and turn it into graph Gt+1. Using this observation, I can simplify the knowledge

graph generation problem. Instead of predicting Gt+1 given Gt and prior context, I can

instead predict the differences between the two graphs.

In Figure 3.2, between steps t and t+ 1, I see that Gt+1−Gt is the set of tuples that are

added to Gt and Gt − Gt+1 the set of tuples are are deleted from Gt. Together they make

up the graph differences. Here, I make a second key observation that allows for yet further

simplification of the problem. This observation is based on generally applicable properties

of such worlds: (1) locations are fixed and unique, i.e. the positions of locations with

respect to each other does not change; (2) objects and characters can only be in one location

at a time; and (3) contradicting object attributes can be identified using a lexical dictionary

such as WordNet (Miller 1995), e.g. an object cannot be both open and closed at the same

time. These properties let us uniquely identify the triples to be deleted from the graph

Gt − Gt+1 given triples to be added to the graph Gt+1 − Gt. Additional implementation

details can be found in Appendix A.2.

Taken together, the Knowledge Graph Generation task can be cast as follows: predict

the nodes to be added to the graph Gt at time step t : Gt+1 − Gt (a much smaller set than

Gt+1 by itself) to transform it into graph Gt+1 given the textual observations, valid actions,

and graph at time step t : Ot, Vt, Gt ∈ St, and action A for all samples in the dataset.
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3.2.2 Multi-task Architecture

The Worldformer is a multi-task world model that simultaneously learns to perform both

knowledge graph and valid action generation. It is built on the hypothesis that each of these

tasks contains information crucial to the other—the valid actions that can be executed at

any timestep are entirely dependent on the current state and vice versa the state knowledge

graph updates on the basis of the previously executed action.

Figure 3.3 describes the architecture of the Worldformer. The inputs to the architecture

are textual observations, valid actions, and graph at time step t : Ot, Vt, Gt ∈ St. Ot

and Vt are encoded through a bidirectional text encoder into Ot. In my work, I used an

architecture similar to BERT (Devlin et al. 2019) with the original pre-trained weights that

are then fine-tuned using a masked language model (MLM) loss on observations taken from

the training data. Ot is the output of the final hidden layer. The graph encoder receives Gt

and encodes it into Gt. It is also similar to BERT, but is pre-trained on knowledge graphs

found in the training data using a MLM loss with a phrase-level masking scheme where

whole components of a 〈s, r, o〉 graph triple (individual underlined portions in Figure 3.3)

are masked at once. Again, Gt is the output of the final hidden layer.

Ot and Gt are passed into a representation aggregator which then sends the combined

encoded state representation St to one of two autoregressive decoders that have the same

general internal architecture as GPT-2 (Radford et al. 2019). This aggregator is a small

transformer sand-witched between linear layers that is meant to reduce the dimension of

the input vector representation, more details are found in Appendix A. During training, the

first decoder is conditioned on St directly and Ot through cross-attention and takes in the

valid actions of the next state Vt+1 as input, learning to predict the same input sequence

shifted to the right as sequence-to-sequence models do. Similarly, the second decoder is

conditioned on St directly and Gt through cross-attention and takes in the knowledge graph

of the next state Gt+1 −Gt as input.
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[OBS] West of House You are standing
in an open field west of a white house...
[ACT] go north [ACT] open mailbox ...

Bidirectional
Text

Encoder

Graph
Encoder

Graph
Decoder

[GRAPH] you, in, North of House ...

you, in, North of House ...

Action
Decoder

[ACT] drop leaflet [ACT] go west  ...

drop leaflet [ACT] go west ...

 [GRAPH] you, in, West of House
[TRIPLE] West of house, has, mailbox 

[TRIPLE] mailbox, is, openable ...

Aggre-
gator
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cross-attention

cross-attention
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Gt+1 - Gt

Ot + Vt

Vt+1

Ot

Gt

St

Figure 3.3: The Worldformer architecture. The text encoder (B) and graph encoder (R)
have similar architecture but different pre-training strategies. Both the decoders are not
pre-trained and have identical architectures. Solid black lines indicate gradient flow.

3.2.3 Set of Sequences Generation and Training

I observe that both the knowledge graph difference Gt+1 − Gt and the valid actions Vt+1

are both Sets of Sequences where the ordering of the sequence of tokens within an action

or a graph triple matters but the ordering of all the actions and triples does not. Standard

autoregressive decoding used in sequence-to-sequence (Seq2Seq) models (Sutskever et al.

2014) does not account for such permutation invariance. I frame the graph and action

prediction tasks as a generation of a Set of Sequences (SOS) problem—expanding on the

simple set prediction problem definition proposed by works such as Deep Sets (Zaheer et

al. 2017) to account for the specific structure of Sets of Sequences. This problem structure

is used to then formulate a training methodology that lets autoregressive decoders better

account for the SOS structure.

For both of the decoders in Figure 3.3, we are given a target sequence Y = {y1, ..., yM}

and some input context via the encoders X . Standard autoregressive techniques factor the

distribution over the target sequence into a chain of conditional probabilities with a causal
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left to right structure.

P (Y |X; θ) =
M+1∏
i=1

p(yi|y0:i−1, X; θ) (3.1)

Where θ represents the overall network parameters. This can then be used to formulate a

maximum likelihood training loss with cross-entropy at every step.

Lseq = logP (Y |X; θ) =
M+1∑
i=1

logp(yi|y0:i−1, X; θ) (3.2)

In my setting, we can group elements in Y into its set of sequences form

Ysos = {y′1...y′M ′}, y′i ∈ Vt+1 or y′i ∈ Gt+1 −Gt,M
′ ≤M

where y′i = {yk...yk+l},
∑
j

len(y′j) = M (3.3)

Via the decoders, we seek to learn a transformation from St ∈ IRd (the input d-

dimensional state representation vector) and Ysos ∈ Y (decoder inputs in the space of all

possible decoder inputs Y) that map to the permutation invariant target set of sequences

Ysos. This function can then be defined as f : IRd ∪ 2Y → 2Y as the permutation invariance

of part of the domain and range of this function makes it the power set of Y .

Combining this definition of permutation invariant functions with Eq. 3.2, 3.3, we can

factorize the distribution over the output Set of Sequences as the following chain of proba-

bilities:

P (Ysos|X; θ) =
M+1∏
i=1

p(y′i|X; θ) (3.4a)

p(y′i|X; θ) =
l+n∏
k=l

p(yk|yl:k−1, X; θ) (3.4b)

where l =
∑
j<i

len(y′j), n = len(y′i)

With the key intuition here being that Eq. 3.4a factorizes the distribution such that each
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element of Ysos is independent of other elements in the set, but tokens of an element y′i in

the set are conditioned on preceding tokens within the element (Eq. 3.4b).

This in turn gives us a maximum likelihood Set of Sequences loss that can be used to

train a model to output a Set of Sequences.

Lsos = logP (Ysos|X; θ)

Lsos =
M+1∑
i=1

logp(y′i|X; θ) (3.5a)

Lsos =
M+1∑
i=1

l+n∑
k=l

logp(yk|yl:k−1, X; θ)

where l =
∑
j<i

len(y′j), n = len(y′i) (3.5b)

In my formulation, I have observation sequences at timestep t : Ot, Vt encoded into

Ot, graph Gt encoded into Gt, and all of them combined into St, with the output Sets of

Sequences at timestep t + 1 being the graph difference Gt+1 − Gt and valid actions Vt+1.

Across the two decoders, this gives us a combined loss:

Lworld = logP (Gt+1 −Gt|St,Gt; θ) + logP (Vt+1|St,Ot; θ) (3.6)

This loss is used to multi-task train the Worldformer simultaneously across the two tasks.

3.3 Evaluation

I evaluate the Worldformer by comparing it on both of the tasks across 9 never-before-

seen testing games against strong baselines. I further present ablation studies in each task

to determine the relative importance of each of the techniques presented in the previous

section.
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3.3.1 Knowledge Graph Generation

All sequence models use a fixed graph vocabulary of size 7002 that contains all unique

relations and entities at train and test times.

Metrics. For this task, I report two types of metrics (Exact Match or EM and F1)

operating on two different levels—at a graph tuple level and another at a token level. EM

checks for direct overlap between the predictions and ground truth, while F1 is a harmonic

mean of predicted precision and recall. The graph level metrics are based on matching the

set of 〈subject, relation, object〉 triples within the graph, all three tokens in a particular

triple must match a triple within the ground truth graph to count as a true positive. The

token level metrics operate on measuring unigram overlap in the graphs, any relations or

entities in the predicted tokens that match the ground truth count towards a true positive.

Baselines

I compare the Worldformer to 4 baselines taken from contemporary knowledge graph-

based world modeling approaches in text games—three of which have been developed and

introduced by me.

Rules. Following Ammanabrolu and Hausknecht (2020) (or as seen in Chapter 4), I

extract graph information from the observation using information extraction tools such as

OpenIE (Angeli et al. 2015) in addition to some hand-authored rules to account for the

irregularities of text games.

At every step, given the current state and possible attributes as context. The rest of the

triples are extracted using OpenIE (Angeli et al. 2015).

• Linking the current room type (e.g. “Kitchen”, “Cellar”) to the items found in the

room with the relation “has”, e.g. 〈kitchen, has, lamp〉

• All attribute information for each object is linked to the object with the relation “is”.

e.g. 〈egg, is, treasure〉
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• Linking all inventory objects with relation “have” to the “you” node, e.g. 〈you, have, sword〉

• Linking rooms with directions based on the action taken to move between the rooms,

e.g. 〈Behind House, east of, Forest〉 after the action “go east” is taken to go from

behind the house to the forest

Question-Answering. This baseline comes from the Q*BERT agent described in Am-

manabrolu et al. (2020d) (or as seen in Chapter 4). It is trained on the SQuAD 2.0 (Ra-

jpurkar et al. 2018), the Jericho-QA text game question answering dataset (Ammanabrolu

et al. 2020d) on the same set of training games as found in Worldformer, and then on

Worldformer itself by formatting my dataset in the style of questions and answers when

possible. It uses the ALBERT (Lan et al. 2020) variant of the BERT (Devlin et al. 2019)

natural language transformer to answer questions and populate the knowledge graph via a

few hand-authored rules from the answers. Examples of questions asked include: “What is

my current location?”, “What objects are around me?”.

Seq2Seq. I introduce an encoder-decoder based sequence-to-sequence learning ap-

proach (Sutskever et al. 2014) inspired by the transformer model BART (Lewis et al.

2020). The model architecture consists of a bidirectional encoder such as BERT (Devlin

et al. 2019) that takes the full set of textual observations—including location and inven-

tory descriptions—as input and an autoregressive decoder such as GPT-2 (Radford et al.

2019) which takes in the current graph and learns to predict the graph sequence shifted by

a token. The weights of the encoder are fine-tuned from BERT’s original weights on both

the graphs, in triple form, and the textual observations taken from the training games using

a masked language modeling loss. The decoder is not pre-trained. During test time, only

the starting token is given to the decoder and it decodes the graph token by token via bean

search until an end-of-sequence token is reached.

GATA-World. I adapt the Graph-Aided Transformer Agent (Adhikari et al. 2020) to

my task. It consists of the same encoder structure as the Worldformer but contains one

decoder that performs single-task Seq2Seq learning to decode both the set of tuples that
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Table 3.1: Results across both the tasks for the models specified. Overall indicates a size
weighted average. All experiments were performed over three random seeds, with stan-
dard deviations not exceeding ±3.2 in any of the overall categories for KG prediction and
±1.2 for valid action prediction. Bolded results indicate highest overall scores. Asterisk
(∗) indicates when the top result is significantly higher (p < 0.05 with an ANOVA test
followed by a post-hoc pair-wise Tukey test) over all alternatives. † indicates this result is
not significantly higher than Worldformer.

Expt. Met- Game zork1 lib. det. bal. pent. ztuu ludi. deep. temp. overall
rics Size 886 654 434 990 276 462 2210 630 1294 7836

Knowledge Graph Prediction

Rules
Gr. EM 3.72 7.61 1.39 9.17 6.44 4.94 5.10 0.49 2.48 4.70

F1 4.46 12.87 4.55 11.90 10.22 10.06 8.37 0.64 3.36 7.25

Tok. EM 6.08 10.33 7.51 32.53 16.48 14.40 14.47 3.34 7.42 13.08
F1 8.42 26.74 10.23 36.09 23.36 21.74 18.48 3.86 9.44 17.50

Q*BERT Gr. EM 24.56 29.14 34.45 41.22 28.96 22.17 41.44 4.42 36.84 32.79
(Question F1 24.88 31.46 36.23 41.85 30.12 26.26 46.74 4.66 39.86 35.48
Answering) Tok. EM 43.93 49.78 60.28 85.81 65.02 49.44 57.58 9.31 48.98 53.58†

F1 48.31 52.76 63.21 86.18 69.54 49.82 60.95 9.84 49.17 55.74†

Seq2Seq
Gr. EM 12.44 18.42 26.86 8.19 22.18 16.89 12.94 8.38 16.48 14.29

F1 12.96 18.89 29.48 9.04 23.54 16.89 14.18 10.47 18.52 15.54

Tok. EM 18.01 20.26 35.86 17.60 25.48 17.19 14.8 13.25 22.48 18.80
F1 21.12 20.84 35.86 18.86 27.72 17.87 15.42 13.25 24.34 19.96

GATA-W
Gr. EM 22.30 24.72 21.72 23.68 22.81 27.00 24.55 23.76 24.52 24.06

F1 25.34 26.47 22.14 26.54 27.63 27.00 24.55 23.76 24.92 25.19

Tok. EM 33.09 33.88 25.64 34.64 37.71 35.81 35.94 32.48 40.89 35.31
F1 33.93 34.86 25.80 38.68 39.59 38.88 37.16 32.48 43.97 37.10

Worldformer Gr. EM 21.62 34.39 41.05 50.41 30.00 41.56 40.10 41.87 42.43 39.15∗
F1 24.44 34.39 44.53 52.43 34.30 42.20 41.65 42.74 45.17 41.06∗

Tok. EM 42.88 41.98 54.39 62.22 49.00 50.80 51.29 50.04 53.81 51.32
F1 48.12 41.98 59.13 62.22 49.00 52.24 51.29 50.04 54.96 52.45

Valid Action Prediction

Seq2Seq Act EM 16.65 15.13 18.19 16.19 23.39 14.75 20.10 14.71 20.34 18.10
F1 17.85 16.88 21.12 18.23 25.87 15.13 20.86 14.86 22.14 19.44

CALM Act EM 18.67 11.18 17.37 10.04 13.77 11.29 15.49 10.31 13.13 13.79
F1 18.90 25.49 34.42 12.16 34.40 9.95 20.94 7.84 18.57 19.11

World- Act EM 23.08 22.55 20.97 29.08 27.05 20.71 21.36 24.04 22.80 23.22∗
former F1 23.50 26.52 25.28 32.89 31.32 23.66 22.27 26.12 25.66 25.54∗

must be added as well as deleted from the graph in the form of: 〈add, node1, node2,

relation〉 or 〈del, node1, node2, relation〉. This is equivalent to predicting (Gt+1 − Gt) ∪

(Gt −Gt+1). It is trained with the Seq2Seq cross-entropy loss (Eq. 3.2).

Analysis Table 3.1 describes the results in this task over all the games. I see that on

the graph level metrics, the Worldformer performs significantly better than all other other

baselines. On the token level metrics, the Worldformer and QA method are comparable—

the difference between these two methods are statistically non-significant (p = 0.18) with

each other but both significantly (p < 0.05) higher than all others. The QA method, and

other extractive methods, highlight portions of the input observation that form the graph and

are particularly well suited for the token level metrics. The JerichoWorld developers note
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Table 3.2: Worldformer ablations to test the impact of its three main components for KG
prediction. All results are size weighted averages over all test games over three random
seeds, with standard deviations not exceeding ±3.2 in any category.

Ablation Graph Token
Graph Multi SOS EM F1 EM F1Diff Task Loss

14.29 15.54 18.80 19.96
X X 29.29 31.41 39.99 41.02

X X 32.60 34.65 42.74 44.35
X X 35.94 36.17 48.82 50.18
X X X 39.15 41.06 51.32 54.45

that these approaches are prone to over-extraction, i.e. extracting more text than is strictly

relevant from the input observation aiding token level overlap but resulting in a sharp drop

in terms of the graph level metrics. Recall that text games are partially observable and so

the textual observations themselves may potentially be incomplete. An example of such

an observation is: “You see a locked chest in front of you in the cellar.”. The ground truth

graph for this would be: 〈you, in, Cellar〉, 〈chest, in, cellar〉, 〈chest, is, lockable〉, 〈sword,

in, chest〉. The last fact in the graph, the sword being in the chest, is not revealed to you

via the observation until you open the chest and thus cannot be predicted by extractive

approaches like Rules and QA. The Worldformer is able to make a informed guess as to

the contents of the chest due to its training, providing a form of look ahead that the Rules

and QA systems cannot.

Table 3.3 present the results of an ablation study testing the relative importance of the

three main components of the Worldformer: graph difference prediction, multi-task train-

ing, and the SOS loss. I note that a model without any of these components is equivalent to

the Seq2Seq approach described previously. I see significant drops in performance, partic-

ularly on the graph level metrics, when any single one of these components are removed.

This indicates that all three components are necessary for the Worldformer to achieve state-

of-the-art performance.

In particular, I note that the largest performance drop was when Worldformer did not
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use the graph difference simplification. In this case, the KG prediction task is simplified to

predicting only; the length of the set of sequences Gt+1 − Gt is much smaller than Gt+1.

There are on average 3.42 triples or 10.42 tokens per state across the JerichoWorld test

dataset forGt+1−Gt but a mean of 8.71 triples or 26.13 tokens per state forGt+1. This also

explains the increased performance of the GATA-W over the baseline Seq2Seq agent—this

agent only needs to predict on average 5.04 rules or 20.16 tokens across the testing games.

Predicting a smaller number of triples and tokens per state makes the problem relatively

more tractable for world modeling agents. Qualitative examples illustrating these trends

are found in Appendix A.3.1.

3.3.2 Valid Action Generation

Similarly to the other task, I compare the Worldformer to an existing baseline for valid

action prediction. All models use a fixed vocabulary of size 11,056 at train and test times.

Metrics. For this task, I adapt the graph level Exact Match (EM) and F1 metrics as

described in the previous task to actions. In other words, positive EM or F1 happens only

when all tokens in a predicted valid action match one in the gold standard set. Given that

most valid actions have less than four tokens, I do not use standard Seq2Seq metrics—

such as BLEU (Papineni et al. 2002)—intended for measuring n-gram overlap in longer

sequences.

Seq2Seq. This single-task model is identical to the Seq2Seq model described in the

previous task but is single-task trained to predict valid actions.

CALM. I would like to note the presence of a complementary dataset of observation-

action pairs created by humans on the ClubFloyd online Interactive Narrative forum.2 This

dataset appears in both Ammanabrolu and Hausknecht (2020) and Yao et al. (2020) with

the latter using it to tune a GPT-2 model for valid action prediction using a GPT-2 based

Seq2Seq valid action model dubbed CALM.3 This model takes in Ot, A,Ot+1 and attempts

2http://www.allthingsjacq.com/interactive fiction.html
3https://github.com/princeton-nlp/calm-textgame
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Table 3.3: Worldformer ablations to test the impact of its two main components for action
prediction. All results are size weighted averages over all test games over three random
seeds, with standard deviations not exceeding ±1.2 in any category.

Ablation Act
Multi SOS EM F1Task Loss

18.10 19.44
X 20.78 22.42

X 20.12 21.28
X X 23.22 25.54

to output Vt+1.

In Table 3.1, we see that the Worldformer significantly outperforms the Seq2Seq base-

line on all the games and CALM overall. Each valid action in a text game requires at most

5 tokens. This combined with an average of 10.30 valid actions per test state means that

for every state I would need to generate about 52 tokens. Yet further, the vocabulary size

for actions is 11, 056, larger than the graph vocabulary of 7, 002. This increase in task dif-

ficulty explains the relative decrease in the magnitude of performance metrics between KG

and valid action prediction tasks.

Both the Seq2Seq model and CALM—which is trained on a different dataset—are com-

parable on F1 scores but Seq2Seq is better overall for exact matches. CALM also has rel-

atively higher variance in performance across the test games than the other two methods—

e.g. on some games such as zork1 and detective it outperforms the Seq2Seq and is not too

far off the Worldformer especially in terms of F1 score. This would appear to indicate that

the Club Floyd dataset of text game transcripts that CALM was trained on is better suited

for transfer to certain games than others, likely due to differences in training set genre sim-

ilarities. A careful mix of these datasets could potentially lead to greater generalization

performance, though this is left to future work.

Table 3.3 presents an ablation study that tests the two main components of the World-

former for this task: multi-task learning, and SOS loss. As with the KG prediction task,

I observe significant drops in performance when either of these components are taken
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away—suggesting that they are relatively critical components.

There is a correlation between performance of the baseline Seq2Seq model to the av-

erage number of valid actions for the testing game (see Appendix A). This is likely due to

label imbalance in the dataset, the model likely learns a common set of actions found across

all games such as navigation actions before learning more fine-grained actions. E.g., in al-

most every single instance, the standard movement actions (north, south, east, west) are all

predicted regardless of which directional actions are actually available—likely due to all of

them being very commonly available together on average across the training data. Another

example, ztuu, deephome, and balances have a high number of gold standard average valid

actions while pentari, ludicorp, detective, and temple which have a low number of average

valid actions. While the latter set of games have generally higher performance on both

the Seq2Seq and Worldformer models, the gap is significantly less pronounced with the

Worldformer. I hypothesize that this is due to the multi-task training of the Worldformer—

encoder representations now contain enough information regarding the next knowledge

graph to alleviates the label imbalance of the actions and enable prediction of more fine-

grained actions. Again, qualitative samples illustrating these trends may be found in Ap-

pendix A.3.1.

3.4 Conclusions

This chapter presents the Worldformer dataset and corresponding benchmarks that seek

to drive progress in textual world modeling. This primarily involves two key challenges

behind the creation of agents that can understand and generate natural language in a diverse

set of interactive and situated settings such as text games. My dataset provides mappings

from textual observations to ground truth knowledge graph states to enable agents to learn

to infer the state of the world—alleviating the knowledge representation or Textual-SLAM

challenge. A key insight from an comparison of baseline models shows that a promising

future direction lies in inferring the knowledge graph world state through commonsense
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reasoning rather than extracting this information due to the partial observability of text

games.

A second world modeling task revolves around tacking the combinatorially-sized action

space of text games. The dataset also provides mappings from textual observations to valid

actions—i.e. the set of contextually relevant actions guaranteed to change the world in any

state. A qualitative analysis of a state-of-the-art Seq2Seq model adapted to the domain

and trained for this task suggests that while learning to conditionally generate commonly

occurring actions across a large set of games might be relatively easy, learning to generate

specific and contextually relevant actions provides a significantly more difficult challenge.

In particular, the Worldformer’s state-of-the-art performance and the ablation studies

have three potential implications: (1) the simplification of the knowledge representation

problem into that of predicting knowledge graph differences between subsequent states is

a critical step in making the problem more tractable; (2) performance improvements due

to multi-task training imply that acting in and mapping these worlds is inherent a highly

correlated problem and benefits from being solved jointly; and (3) the performance boosts

due to the SOS loss suggest that accounting for this property of graphs and actions enables

more effective training than if we were to treat them as simple sequences.
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CHAPTER 4

SCALING TO COMBINATORIAL LANGUAGE ACTION SPACES

To gain a sense for the challenges surrounding natural language generation, we need to first

understand how large this space really is. In order to solve solve a popular IF game such

as Zork1 it’s necessary to generate actions consisting of up to five-words from a relatively

modest vocabulary of 697 words recognized by Zork’s parser. Even this modestly sized

vocabulary leads to O(6975) = 1.64× 1014 possible actions at every step—a dauntingly-

large combinatorially-sized action space for a learning agent to explore.

This chapter introduces three novel agents that utilizes both a knowledge graph based

state space and shows how to train such agents—using both off and on policy reinforce-

ment learning. I then conduct an empirical study evaluating my agent across a diverse set

of IF games followed by an ablation analysis studying the effectiveness of various compo-

nents of my algorithm as well as its overall generalizability. Remarkably I show that the

agents achieve state-of-the-art performance on a large proportion of the games despite the

exponential increase in action space size.

4.1 Off Policy: Knowledge Graph Deep Q-Network

This section introduces an off-policy RL algorithm that can train agents to play text games,

the KG-DQN. I use all the same POMDP definitions as previously introduced. Following

Narasimhan et al. (2015), all actions A that will be accepted by the game’s parser are

available to the agent at all times. When playing the game, the agent chooses an action and

receives an observation ot from the simulator, which is a textual description of the current

game state. The state graph Gt is updated according to the given observation, as seen in

Figure 4.1 and Chapter 8.

I use the Q-Learning technique (Watkins and Dayan 1992) to learn a control policy
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Figure 4.1: Graph update rules

Figure 4.2: KG-DQN architecture, blue shading (or the symbol ’B’) indicates components
that can be pre-trained and red (or the symbol ’R’) indicates no pre-training. The solid lines
indicate gradient flow for learnable components.

π(at|st), at ∈ A, which gives us the probability of taking action at given the current state

st. The policy is determined by the Q-value of a particular state-action pair, which is

updated using the Bellman equation (Sutton and Barto 2018):

Qt+1(st+1,at+1) =

E[rt+1 + γmax
a∈At

Qt(s, a)|st, at]
(4.1)

where γ refers to the discount factor and rt+1 is the observed reward. The policy is thus to

take the action that maximizes the Q-value in a particular state, which will correspond to

the action that maximizes the reward expectation given that the agent has taken action at at

the current state st and folloId the policy π(a|s) after.
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The architecture in Figure 4.2 is responsible for computing the representations for both

the state st and the actions a(i) ∈ A and coming to an estimation of the Q-value for a

particular state and action. During the forward activation, the agent uses the observation to

update the graph Gt using the rules outlined in Section 4.1.1.

The graph is then embedded into a single vector gt. I use Graph Attention (Veličković et

al. 2018) with an attention mechanism similar to that described in Bahdanau et al. (2014).

Formally, the Multi-headed Graph Attention component receives a set of node features

H = {h1,h2, . . . ,hN}, hi ∈ IRF, where N is the number of nodes and F the number of

features in each node, and the adjacency matrix of Gt. Each of the node features consist of

the averaged word embeddings for the tokens in that node, as determined by the preceding

graph embedding layer. The attention mechanism is set up using self-attention on the nodes

after a learnable linear transformation W ∈ IR2F×F applied to all the node features:

eij = LeakyReLU(p ·W (hi ⊕ hj)) (4.2)

where p ∈ IR2F is a learnable parameter. The attention coefficients αij are then computed

by normalizing over the choices of k ∈ N using the softmax function. Here N refers to

the neighborhood in which I compute the attention coefficients. This is determined by the

adjacency matrix for Gt and consists of all third-order neighbors of a particular node.

αij =
exp(eij)∑
k∈N exp(eik)

(4.3)

Multi-head attention is then used, calculating multiple independent attention coefficients.

The resulting features are then concatenated and passed into a linear layer to determine gt:

gt = f(Wg(‖Kk=1σ(
∑
j∈N

α
(k)
ij W(k)hj)) + bg) (4.4)

where k refers to the parameters of the kth independent attention mechanism,Wg and bg the
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weights and biases of this component’s output linear layer, and ‖ represents concatenation.

Simultaneously, an encoded representation of the observation ot is computed using a

Sliding Bidirectional LSTM (SB-LSTM). The final state representation st is computed as:

st = f(Wl(gt ⊕ ot) + bl) (4.5)

where Wl, bl represent the final linear layer’s weights and biases and ot is the result of

encoding the observation with the SB-LSTM.

The entire set of possible actions A is pruned by scoring each a ∈ A according to the

mechanism previously described using the newly updated Gt+1. I then embed and encode

all of these action strings using an LSTM encoder (Sutskever et al. 2014). The dashed lines

in Figure 4.2 denotes non-differentiable processes.

The final Q-value for a state-action pair is:

Q(st, at) = st · at (4.6)

This method of separately computing the representations for the state and action is similar

to the approach taken in the DRRN (He et al. 2016b).

I train the network using experience replay (Lin 1993) with prioritized sampling (cf.,

Moore and Atkeson (1993)) and a modified version of the ε-greedy algorithm (Sutton and

Barto 2018) that I call the ε1, ε2-greedy learning algorithm. The experience replay strategy

finds paths in the game, which are then stored as transition tuples in a experience replay

buffer D. The ε1, ε2-greedy algorithm explores by choosing actions randomly from A with

probability ε1 and from At with a probability ε2. The second threshold is needed to account

for situations where an action must be chosen to advance the quest for which the agent

has no prior in Gt. That is, action pruning may remove actions essential to quest comple-

tion because those actions involve combinations of entities that have not been encountered

before.
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I then sample a mini-batch of transition tuples consisting of 〈sk, ak, rk+1, sk+1,Ak+1, pk〉

from D and compute the temporal difference loss as:

L(θ) = rk+1 + γ max
a∈Ak+1

Q(st, a; θ)−Q(st, at; θ) (4.7)

Replay sampling from D is done by sampling a fraction ρ from transition tuples with a

positive reward and 1− ρ from the rest. As shown in Narasimhan et al. (2015), prioritized

sampling from experiences with a positive reward helps the deep Q-network more easily

find the sparse set of transitions that advance the game. The exact training mechanism is

described in Algorithm 1.

4.1.1 Action Pruning

The number of actions available to an agent in a text adventure game can be quite large:

A = O(|V | × |O|2) where V is the number of action verbs, and O is the number of distinct

objects in the world that the agent can interact with, assuming that verbs can take two

arguments. Some actions, such as movement, inspecting inventory, or observing the room,

do not have arguments.

The knowledge graph is used to prune the combinatorially large space of possible ac-

tions available to the agent as follows. Given the current state graph representation Gt, the

action space is pruned by ranking the full set of actions and selecting the top-k. My action

scoring function is:

• +1 for each object in the action that is present in the graph; and

• +1 if there exists a valid directed path between the two objects in the graph.

I assume that each action has at most two objects (for example inserting a key in a lock).
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Algorithm 2 ε1, ε2-greedy learning algorithm for KG-DQN
1: for episode=1 to M do
2: Initialize action dictionary A and graph G0

3: Reset the game simulator
4: Read initial observation o1
5: G1 ← updateGraph(G0, o1); A1 ← pruneActions(A,G0) . Section 4.1.1
6: for step t=1 to T do
7: if random() < ε1 then
8: if random() < ε2 then
9: Select random action at ∈ A

10: else
11: Select random action at ∈ At

12: else
13: Compute Q(st,a

(i); θ) for a(i) ∈ A for network parameters θ . Section 4.1, Eq. 4.6
14: Select at based on π(a|st)
15: Execute action at in the simulator and observe reward rt
16: Receive next observation ot+ 1
17: Gt+1 ← updateGraph(Gt, ot+1); At+1 ← pruneActions(A,Gt+1) . Figure 4.1
18: Compute st+1 and At+1 = {a′(i) for all a′(i) ∈ A} . Section 4.1
19: Set priority pt = 1 if rt > 0, else pt = 0
20: Store transition (st,at, rt, st+1,At+1, pt) in replay buffer D
21: Sample mini-batch of transitions (sk,ak, rk, sk+1,Ak+1, pk) from D, with fraction ρ having

pk = 1
22: Set yk = rk + γmaxa∈Ak+1

Q(st,a; θ), or yk = rk if sk+1 is terminal
23: Perform gradient descent step on loss function L(θ) = (yk −Q(st,at; θ))

2

4.1.2 Benefits of a Persistent Memory

I conducted experiments in the TextWorld framework (Côté et al. 2018) using their “home”

theme. TextWorld uses a grammar to randomly generate game worlds and quests with

given parameters. Games generated with TextWorld start with a zero-th observation that

gives instructions for the quest; I do not allow my agent to access this information. The

TextWorld API also provides a list of admissible actions at each state—the actions that can

Table 4.1: Generated game details.

Small Large
Rooms 10 20
Total objects 20 40
Quest length 5 10
Branching factor 143 562
Vocab size 746 819
Average words per obs. 67.5 94.0
Average new RDF triples per obs. 7.2 10.5

51



be performed based on the objects that are present. I do not allow my agent to access the

admissible actions.

I generated two sets of games with different random seeds, representing different game

difficulties, which I denote as small and large. Small games have ten rooms and quests

of length five and large games have tInty rooms and quests of length ten. Statistics on the

games are given in Table 4.1. Quest length refers to the number of actions that the agent

is required to perform in order to finish the quest; more actions are typically necessary to

move around the environment and find the objects that need to be interacted with. The

branching factor is the size of the action set A for that particular game.

The reward function provided by TextWorld is as follows: +1 for each action taken

that moves the agent closer to finishing the quest; -1 for each action taken that extends the

minimum number of steps needed to finish the quest from the current stage; 0 for all other

situations. The maximum achievable reward for the small and large sets of games are 5 and

10 respectively. This allows for a large amount of variance in quest quality—as measured

by steps to complete the quest—that receives maximum reward.

The following procedure for pre-training was done separately for each set of games.

Pre-training of the SB-LSTM within the question-answering architecture is conducted by

generating 200 games from the same TextWorld theme. The QA system was then trained

on data from walkthroughs of a randomly-chosen subset of 160 of these generated games,

tuned on a dev set of 20 games, and evaluated on the held-out set of 20 games. Table 4.2

provides details on the Exact Match (EM), precision, recall, and F1 scores of the QA system

after training for the small and large sets of games. Precision, recall, and F1 scores are

calculated by counting the number of tokens between the predicted answer and ground

truth. An Exact Match is when the entire predicted answer matches with the ground truth.

This score is used to tune the model based on the dev set of games.

A random game was chosen from the test-set of games and used as the environment for

the agent to train its deep Q-network on. Thus, at no time did the QA system see the final
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Table 4.2: Pre-training accuracy.

EM Precision Recall F1
Small 46.20 56.57 63.38 57.94
Large 34.13 52.53 64.72 55.06

testing game prior to the training of the KG-DQN network.

I compare my technique to three baselines:

Random command. This baseline samples from the list of admissible actions returned

by the TextWorld simulator at each step.

LSTM-DQN. This was developed by Narasimhan et al. (2015).

Bag-of-Words DQN. This baseline uses a bag-of-words encoding with a multi-layer

feed forward network instead of an LSTM.

To achieve the most competitive baselines, I used a randomized grid search to choose

the best hyperparameters (e.g., hidden state size, γ, ρ, final ε, update frequency, learning

rate, replay buffer size) for the BOW-DQN and LSTM-DQN baselines.

I tested three versions of my KG-DQN:

1. Un-pruned actions with pre-training

2. Pruned actions without pre-training

3. Pruned actions with pre-training (full)

My models use 50-dimensional word embeddings, 2 heads on the graph attention layers,

mini-batch size of 16, and perform a gradient descent update every 5 steps taken by the

agent.

All models are evaluated by observing the (a) time to reward convergence, and (b) the

average number of steps required for the agent to finish the game with ε = 0.1 over 5

episodes after training has completed. Following Narasimhan et al. (2015) I set ε to a

non-zero value because text adventure games, by nature, require exploration to complete

the quests. All results are reported based on multiple independent trials. For the large set
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of games, I only perform experiments on the best performing models found in the small

set of games. Also note that for experiments on large games, I do not display the entire

learning curve for the LSTM-DQN baseline, as it converges significantly more slowly than

KG-DQN. I ran each experiment 5 times and average the results.

Additionally, human performance on the both the games was measured by counting

the number of steps taken to finish the game, with and without instructions on the exact

quest. I modified Textworld to give the human players reward feedback in the form of

a score, the reward function itself is identical to that received by the deep reinforcement

learning agents. In one variation of this experiment, the human was given instructions on

the potential sequence of steps that are required to finish the game in addition to the reward

in the form of a score and in the other variation, the human received no instructions.

Recall that the number of steps required to finish the game for the oracle agent is 5

and 10 for the small and large maps respectively. It is impossible to achieve this ideal

performance due to the structure of the quest. The player needs to interact with objects

and explore the environment in order to figure out the exact sequence of actions required to

finish the quest. To help benchmark my agent’s performance, I observed people unaffiliated

with the research playing through the same TextWorld “home” quests as the other models.

Those who did not receive instructions on how to finish the quest never finished a single

quest and gave up after an average of 184 steps on the small map and an average of 190

steps on the large map. When given instructions, human players completed the quest on the

large map in an average of 23 steps, finishing the game with the maximum reward possible.

Also note that none of the deep reinforcement learning agents received instructions.

On both small and large maps, all versions of KG-DQN tested converge faster than

baselines (see Figure 4.3 for the small game and Figure 4.4 for the large game). I don’t

show BOW-DQN because it is strictly inferior to LSTM-DQN in all situations). KG-DQN

converges 40% faster than baseline on the small game; both KG-DQN and the LSTM-DQN

baseline reaches the maximum reward of five. On the large game, no agents achieve the
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Figure 4.3: Reward learning curve for select experiments with the small games. Best vieId
in color.

Table 4.3: Average number of steps (and standard deviation) taken to complete the small
game.

Model Steps
Random Command 319.8
BOW-DQN 83.1± 8.0
LSTM-DQN 72.4± 4.6
Unpruned, pre-trained KG-DQN 131.7± 7.7
Pruned, non-pre-trained KG-DQN 97.3± 9.0
Full KG-DQN 73.7± 8.5

maximum reward of 10, and the LSTM-DQN requires more than 300 episodes to converge

at the same level as KG-DQN. Since all versions of KG-DQN converge at approximately

the same rate, I conclude that the knowledge graph—i.e., persistent memory—is the main

factor helping convergence time since it is the common element across all experiments.

After training is complete, I measure the number of steps each agent needs to com-

plete each quest. Full KG-DQN requires an equivalent number of steps in the small game

(Table 4.3) and in the large game (Table 4.4). Differences between LSTM-DQN and full

KG-DQN are not statistically significant, p = 0.199 on an independent T-test. The ablated

versions of KG-DQN—unpruned KG-DQN and non-pre-trained KG-DQN—require many
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Figure 4.4: Reward learning curve for select experiments with the large games. Best vieId
in color.

Table 4.4: Average number of steps (and standard deviation) taken to complete the large
game.

Model Steps
Random Command 2054.8
LSTM-DQN 260.3 ± 4.5
Pruned, non-pre-trained KG-DQN 340 ± 6.4
Full KG-DQN 265.9 ± 9.4

more steps to complete quests. TextWorld’s reward function allows for a lot of exploration

of the environment without penalty so it is possible for a model that has converged on re-

ward to complete quests in as few as five steps or in many hundreds of steps. From these

results, I conclude that the pre-training using my question-answering paradigm is allow-

ing the agent to find a general understanding of how to pick good actions even when the

agent has never seen the final test game. LSTM-DQN also learns how to choose actions

efficiently, but this knowledge is captured in the LSTM’s cell state, whereas in KG-DQN

this knowledge is made explicit in the knowledge graph and retrieved effectively by graph

attention. Taken together, KG-DQN converges faster without loss of quest solution quality.

I have shown that incorporating knowledge graphs into an deep Q-network can reduce
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training time for agents playing text-adventure games of various lengths. I speculate that

this is because the knowledge graph provides a persistent memory of the world as it is

being explored. While the knowledge graph allows the agent to reach optimal reward

more quickly, it doesn’t ensure a high quality solution to quests. Action pruning using the

knowledge graph and pre-training of the embeddings used in the deep Q-network result in

shorter action sequences needed to complete quests.

The insight into pre-training portions of the agent’s architecture is based on converting

text-adventure game playing into a question-answering activity. That is, at every step, the

agent is asking—and trying to answer—what is the most important thing to try. The pre-

training acts as a form of transfer learning from different, but related games. However,

question-answering alone cannot solve the text-adventure playing problem because there

will always be some trial and error required.

4.2 On Policy: Knowledge Graph Advantage Actor Critic

Combining the knowledge-graph state space with a template action space, Knowledge

Graph Advantage Actor Critic or KG-A2C, is an on-policy reinforcement learning agent

that collects experience from many parallel environments. I first discuss the architecture of

KG-A2C, then detail the training algorithm. As seen in Fig. 4.5, KG-A2C’s architecture

can broadly be described in terms of encoding a state representation and then using this

encoded representation to decode an action. I describe each of these processes below.

Template Action Space. In order to reduce the size of this space while maintaining

expressiveness, Jericho proposes the use of template-actions in which the agent first selects

a template (e.g. [put] [in] ) then fills in the blanks using vocabulary words. There are

237 templates in Zork1, each with up to two blanks, yielding a template-action space of

size O(237 × 6972) = 1.15× 108. This space is six orders of magnitude smaller than the

word-based space, but still six orders of magnitude larger than the action spaces used by

previous text-based agents (Zahavy et al. 2018; Narasimhan et al. 2015). I demonstrate

57



how these templates provide the structure required to further constrain my action space via

my knowledge graph—and make the argument that the combination of these approaches

allows us to generate meaningful natural language commands.

Templates are subroutines used by the game’s parser to interpret the player’s action.

They consist of interchangeable verbs phrases (V P ) optionally followed by prepositional

phrases (V P PP ), e.g. ([carry/hold/take] ) and ([drop/throw/discard/put] [at/again-

st/on/onto] ), where the verbs and prepositions within [.] are aliases. As shown in Figure

4.6, actions may be constructed from templates by filling in the template’s blanks using

words in the game’s vocabulary. Templates and vocabulary words are programmatically

accessible through the Jericho framework and are thus available for every IF game.

Input Representation. The input representation network is broadly divided into three

parts: an observation encoder, a score encoder, and the knowledge graph. At every step an

observation consisting of several components is received: ot = (otdesc , otgame , otinv
, at−1)

corresponding to the room description, game feedback, inventory, and previous action, and

total score Rt. The room description otdesc is a textual description of the agent’s location,

obtained by executing the command “look.” The game feedback otgame is the simulators

response to the agent’s previous action and consists of narrative and flavor text. The inven-

tory otinv
and previous action at−1 components inform the agent about the contents of its

inventory and the last action taken respectively.

The observation encoder processes each component of ot using a separate GRU en-

coder. As I am not given the vocabulary that ot is comprised of, I use subword tokenization—

specifically using the unigram subword tokenization method described in Kudo (2018).

This method predicts the most likely sequence of subword tokens for a given input using a

unigram language model which, in my case, is trained on a dataset of human playthroughs

of IF games1 and contains a total vocabulary of size 8000. For each of the GRUs, I pass

in the final hidden state of the GRU at step t − 1 to initialize the hidden state at step t. I

1http://www.allthingsjacq.com/interactive fiction.html#clubfloyd
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Figure 4.5: The full KG-A2C architecture. Solid lines represent computation flow along
which the gradient can be back-propagated.

concatenate each of the encoded components and use a linear layer to combine them into

the final encoded observation ot.

At each step, I update my knowledge graph Gt using ot and it is then embedded into

a single vector gt as described in Chapter 3. I again use Graph Attention networks or

GATs (Veličković et al. 2018) with an attention mechanism similar to that described in

Bahdanau et al. (2014). Node features are computed as H = {h1,h2, . . . ,hN}, hi ∈ IRF,

where N is the number of nodes and F the number of features in each node, consist of

the average subword embeddings of the entity and of the relations for all incoming edges

using my unigram language model. Self-attention is then used after a learnable linear

transformation W ∈ IR2F×F applied to all the node features. Attention coefficients αij are

then computed by softmaxing k ∈ N with N being the neighborhood in which I compute
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the attention coefficients and consists of all edges in Gt.

eij = LeakyReLU(p ·W (hi ⊕ hj)) (4.8)

αij =
exp(eij)∑
k∈N exp(eik)

(4.9)

where p ∈ IR2F is a learnable parameter.

αij =
exp(eij)∑
k∈N exp(eik)

(4.10)

The final knowledge graph embedding vector gt is computed as:

gt = f(Wg(
K⊕
k=1

σ(
∑
j∈N

α
(k)
ij W(k)hj)) + bg) (4.11)

where k refers to the parameters of the kth independent attention mechanism,Wg and bg the

weights and biases of the output linear layer, and
⊕

represents concatenation. The final

component of state embedding vector is a binary encoding ct of the total score obtained

so far in the game—giving the agent a sense for how far it has progressed in the game

even when it is not collecting reward. The state embedding vector is then calculated as

st = gt ⊕ ot ⊕ ct.

Action Decoder. The state embedding vector st is then used to sequentially construct

an action by first predicting a template and then picking the objects to fill into the template

using a series of Decoder GRUs. This gives rise to a template policy πT and a policy for

each object πOi
. Architecture wise, at every decoding step all previously predicted parts of

the action are encoded and passed along with st through an attention layer which learns to

attend over these representations—conditioning every predicted object on all the previously

predicted objects and template. All the object decoder GRUs share parameters while the

template decoder GRUT remains separate.

To effectively constrain the space of template-actions, I introduce the concept of a graph
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Figure 4.6: Visualization of the action decoding process using templates and objects. Ob-
jects consist of the entire game input vocabulary. Greyed out words indicate objects masked
out by the knowledge graph.

mask, leveraging my knowledge graph at that timestepGt to streamline the object decoding

process. Formally, the graph mask mt = {o : o ∈ Gt ∧ o ∈ V }, consists of all the entities

found within the knowledge graph Gt and vocabulary V and is applied to the outputs of the

object decoder GRUs—restricting them to predict objects in the mask. Generally, in an IF

game, it is impossible to interact with an object that you never seen or that are not in your

inventory and so the mask lets us explore the action space more efficiently. To account for

cases where this assumption does not hold, i.e. when an object that the agent has never

interacted with before must be referenced in order to progress in the game, I randomly add

objects o ∈ V to mt with a probability pm. An example of the graph-constrained action

decoding process is illustrated in Fig. 4.6.
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4.2.1 Training

I adapt the Advantage Actor Critic (A2C) method (Mnih et al. 2016) to train my network,

using multiple workers to gather experiences from the simulator, making several significant

changes along the way—as described below.

Valid Actions. Using a template-action space there are millions of possible actions at

each step. Most of these actions do not make sense, are ungrammatical, etc. and an even

fewer number of them actually cause the agent effect change in the world. Without any

sense for which actions present valid interactions with the world, the combinatorial action

space becomes prohibitively large for effective exploration.

I thus use the concept of valid actions, actions that can change the world in a par-

ticular state. These actions can usually be recognized through the game feedback, with

responses like “Nothing happens” or “That phrase is not recognized.” In practice, I fol-

low Hausknecht et al. (2020) and use the valid action detection algorithm provided by Jeri-

cho. Formally, V alid(st) =
{
a0, a1...aN

}
and from this I can construct the corresponding

set of valid templates Tvalid(st) =
{
τ0, τ1...τN

}
. I further define a set of valid objects

Ovalid(st) =
{
o0, o1...oM

}
which consists of all objects in the graph mask as defined in

Sec. 4.2. This lets us introduce two cross-entropy loss terms to aid the action decoding pro-

cess. The template loss given a particular state and current network parameters is applied

to the decoder GRUT . Similarly, the object loss is applied across the decoder GRUO and is

calculated by summing cross-entropy loss from all the object decoding steps.

LT(st, at; θt) =
1

N

N∑
i=1

(yτilogπT(τi|st) + (1− yτi)(1− logπT(τi|st)) (4.12)

LO(st, at; θt) =
n∑
j=1

1

M

M∑
i=1

(yoilogπOj
(oi|st) + (1− yoi)(1− logπOj

(oi|st))) (4.13)
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yτi =

 1 τi ∈ Tvalid(st)

0 else
yoi =

 1 oi ∈ Ovalid(st)

0 else

Updates. A2C training starts with calculating the advantage of taking an action in a

state A(st, at), defined as the value of taking an action Q(st, at) compared to the average

value of taking all possible valid actions in that state V (st):

A(st, at) = Q(st, at)− V (st) (4.14)

Q(st, at) = E[rt + γV (st+1)] (4.15)

V (st) is predicted by the critic as shown in Fig. 4.5 and rt is the reward received at step t.

The action decoder or actor is then updated according to the gradient:

−∇θ(logπT(τ |st; θt) +
n∑
i=1

logπOi
(oi|st, τ, ..., oi−1; θt))A(st, at) (4.16)

updating the template policy πT and object policies πOi
based on the fact that each step

in the action decoding process is conditioned on all the previously decoded portions. The

critic is updated with respect to the gradient:

1

2
∇θ(Q(st, at; θt)− V (st; θt))

2 (4.17)

bringing the critic’s prediction of the value of being in a state closer to its true underlying

value. I further add an entropy loss over the valid actions, designed to prevent the agent

from prematurely converging on a trajectory.

LE(st, at; θt) =
∑

a∈V (st)

P (a|st)logP (a|st) (4.18)
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4.2.2 Graph Ablations

The KG-A2C is tested on a suite of Jericho supported games and is compared to strong,

established baselines. Additionally, as encouraged by Hausknecht et al. (2020), I present

the set of handicaps used by my agents: (1) Jericho’s ability to identify valid actions and

(2) the Load, Save handicap in order to acquire otdesc and otinv
using the look and inventory

commands without changing the game state.

Template DQN Baseline. I compare KG-A2C against Template-DQN, a strong base-

line also utilizing the template based action space. TDQN (Hausknecht et al. 2020) is an

extension of LSTM-DQN (Narasimhan et al. 2015) to template-based action spaces. This

is accomplished using three output heads: one for estimating the Q-Values over templates

Q(st, u)∀u ∈ T and two for estimating Q-Values Q(st, o1), Q(st, o2)∀oi ∈ O over vocabu-

lary to fill in the blanks of the template. The final executed action is constructed by greedily

sampling from the predicted Q-values. Importantly, TDQN uses the same set of handicaps

as KG-A2C allowing a fair comparison between these two algorithms.

Table 4.5 shows how KG-A2C fares across a diverse set of games supported by Jericho—

testing the agent’s ability to generalize to different genres, game structures, reward func-

tions, and state-action spaces. KG-A2C matches or outperforms TDQN on 23 out of the

28 games that I test on. My agent is thus shown to be capable of extracting a knowledge

graph that can sufficiently constrain the template based action space to enable effective

exploration in a broad range of games.

In order to understand the contributions of different components of KG-A2C’s archi-

tecture, I ablate KG-A2C’s knowledge graph, template-action space, and valid-action loss.

These ablations are performed on Zork12 and result in the following agents:

A2C. removes all components of KG-A2C’s knowledge graph. In particular, the state

embedding vector is now computed as st = ot ⊕ ct and the graph mask is not used to

2A map of Zork1 with annotated rewards can be found in Appendix B along with a transcript of KG-A2C
playing this game.
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Table 4.5: Raw scores comparing KG-A2C (both with and without the mask) to TDQN
across a wide set of games supported by Jericho. †Advent starts at a score of 36.

Game |T | |V | TDQN KGA2C KGA2C-unmasked MaxRew
905 82 296 0 0 0 1

acorncourt 151 343 1.6 0.3 0.3 30
advent† 189 786 36 36 36 350

adventureland 156 398 0 0 0 100
anchor 260 2257 0 0 0 100

awaken 159 505 0 0 0 50
balances 156 452 4.8 10 10 51

deephome 173 760 1 1 29.2 300
detective 197 344 169 207.9 141 360

dragon 177 1049 -5.3 0 -.2 25
enchanter 290 722 8.6 12.1 7.6 400
inhumane 141 409 0.7 3 10.2 300

jeIl 161 657 0 1.8 1.3 90
karn 161 657 1.2 0 0 90

library 173 510 6.3 14.3 9.6 30
ludicorp 187 503 6 17.8 17.9 150
moonlit 166 669 0 0 0 1

omniquest 207 460 16.8 3 5.4 50
pentari 155 472 17.4 50.7 50.4 70

snacktime 201 468 9.7 0 0 50
sorcerer 288 1013 5 5.8 16.8 400

spellbrkr 333 844 18.7 21.3 30.1 600
spirit 169 1112 0.6 1.3 1.3 250

temple 175 622 7.9 7.6 6.4 35
zenon 149 401 0 3.9 3.1 350
zork1 237 697 9.9 34 27 350
zork3 214 564 0 .1 .1 7

ztuu 186 607 4.9 9.2 5 100
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constrain action decoding.

KG-A2C-no-gat. remove’s the Graph Attention network, but retains the graph masking

components. The knowledge graph is still constructed as usual but the agent uses the same

state embedding vector as A2C.

KG-A2C-no-mask. ablates the graph mask for purposes of action decoding. The

knowledge graph is constructed as usual and the agent retains graph attention.

On Zork1 as shown in Figure 4.7, I observe similar asymptotic performance between

the all of the ablations – all reach approximately 34 points. This level of performance

corresponds to a local optima where the agent collects the majority of available rewards

without fighting the troll. Several other authors also report scores at this threshold (Zahavy

et al. 2018; Jain et al. 2019). In terms of learning speed, the methods which have access to

either the graph attention or the graph mask converge slightly faster than pure A2C which

has neither.

To further understand these differences I performed a larger study across the full set

of games comparing KG-A2C-full with KG-A2C-no-mask. The results in Table 4.5 show

KG-A2C-full outperforms KG-A2C-no-mask on 10 games and is outperformed by KG-

A2C-no-mask on 6. From this larger study I thus conclude the graph mask and knowledge

graph are broadly useful components.

I perform two final ablations to study the importance of the supervised valid-action loss

and the template action space:

KG-A2C-unsupervised. In order to understand the importance of training with valid-

actions, KG-A2C-unsupervised is not allowed to access the list of valid actions—the valid-

action-losses LT and LO are disabled and LE now based on the full action set. Thus,

the agent must explore the template action space manually. KG-A2C-unsupervised, when

trained for the same number of steps as all the other agents, fails to achieve any score. I can

infer that the valid action auxiliary loss remains an important part of the overall algorithm,

and access to the knowledge graph alone is not yet sufficient for removing this auxiliary
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Figure 4.7: Ablation results on Zork1, averaged across 5 independent runs.

loss.

KG-A2C-seq. discards the template action space and instead decodes actions word

by word up to a maximum of four words. A supervised cross-entropy-based valid action

loss LValid is now calculated by selecting a random valid action atvalid ∈ Valid(st) and using

each token in it as a target label. As this action space is orders of magnitude larger than

template actions, I use teacher-forcing to enable more effective exploration while training

the agent—executing atvalid with a probability pvalid = 0.5 and the decoded action otherwise.

All other components remain the same as in the full KG-A2C.

KG-A2C-seq reaches a relatively low asymptotic performance of 8 points. This agent,

using a action space consisting of the full vocabulary, performs significantly worse than

the rest of the agents even when given the handicaps of teacher forcing and being allowed

to train for significantly longer—indicating that the template based action space is also

necessary for effective exploration.

4.3 On Policy: Q*BERT

Q*BERT is a also a reinforcement learning agent that uses a knowledge-graph to repre-

sent its understanding of the world state. Instead of using relation extraction rules as in

KG-A2C, Q*BERT uses a variant of the BERT (Devlin et al. 2019) natural language trans-
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former to answer questions and populate the knowledge graph from the answers.

Knowledge Graph State Representation I treat the problem of constructing the knowl-

edge graph as a question-answering task. My method first extracts a set of graph vertices V

by asking a question-answering system relevant questions and then linking them together

using a set of relations R to form a knowledge graph representing information the agent

has learned about the world. Examples of questions include: “What is my current loca-

tion?”, “What objects are around me?”, and “What am I carrying?” to respectively extract

information regarding the agent’s current location, surrounding objects, inventory objects.

Further, I predict attributes for each object by asking the question “What attributes does x

object have?”. An example of the knowledge graph that can be extracted from description

text and the overall Q*BERT architecture are shown in Figure 4.8.

For question-answering, I use the pre-trained language model, ALBERT (Lan et al.

2020), a variant of BERT that is fine-tuned for question answering on the SQuAD 2.0 (Ra-

jpurkar et al. 2018) question-answering dataset. I further fine-tune the ALBERT model on

a dataset specific to the text-game domain, dubbed Jericho-QA.

4.3.1 Jericho-QA Dataset

The Jericho-QA dataset was created by making question answering pairs about text-games

in the Jericho (Hausknecht et al. 2020)3 framework as follows: For each game in Jericho, I

use an oracle—an agent capable of playing the game perfectly using information normally

off-limits such as the true game state—and a random exploration agent to gather ground

truth state information about locations, objects, and attributes. From this ground truth, I

construct pairs of questions in the form that Q*BERT will ask as it encounters environment

description text, and the corresponding answers. These question-answer pairs are used to

fine-tune the Q/A model and the ground truth data are discarded. No data from games I test

Q*BERT on are used during ALBERT fine-tuning.

3https://github.com/microsoft/jericho
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Questions for QA were chosen on the basis of what past works in the area determined to

be useful state information for the agent. For example, KG-A2C and GATA (Adhikari et al.

2020) explicitly differentiate between inventory/location descriptions/surrounding objects.

The answers are annotated using information in the underlying world object tree that every

text game is built on, this information can be accessed through the engine but, importantly,

is used for annotation in the Jericho-QA dataset only. Jericho-QA data is formatted in the

style of SQuAD 2.0 (Rajpurkar et al. 2018) and given samples of which questions are not

applicable to certain states, i.e. negative samples.

Jericho-QA contains 221453 Question-Answer pairs in the training set and 56667 pairs

in the held out test set. The test set consists of all the games that I test on in this chapter.

The set of attributes for a game is taken directly from the game engine and is defined by

the game developer.

A single sample looks like this:

Context:

[loc] Chief’s Office You are standing in the chief’s office. He is telling you, "The mayor

was murdered yesterday night at 12:03 am. I want you to solve it before I get any bad
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publicity or the FBI has to come in." "Yessir!" you reply. He hands you a sheet of

paper. once you have read it, go north or west. You can see a piece of white paper

here.

[inv] You are carrying nothing.

[obs] [your score has just gone up by ten points.]

[atr] talkable, seen, lieable, enterable, nodwarf, indoors, visited, handed, lockable,

surface, thing, water_room, unlock, lost, afflicted, is_treasure, converse, mentioned,

male, npcworn, no_article, relevant, scored, queryable, town, pluggable, happy,

is_followable, legible, multitude, burning, room, clothing, underneath, ward_area ,

little, intact, animate, bled_in, supporter, readable, openable, near, nonlocal, door,

plugged, sittable, toolbit, vehicle, light, lens_searchable, open, familiar,

is_scroll, aimable, takeable, static, unique, concealed, vowelstart, alcoholic,

bodypart, general, is_spell, full, dry_land, pushable, known, proper, inside, clean,

ambiguously_plural, container, edible, treasure, can_plug, weapon, is_arrow,

insubstantial, pluralname, transparent, is_coin, air_room, scenery, on, is_spell_book,

burnt, burnable, auto_searched, locked, switchable, absent, rockable, beenunlocked,

progressing, severed, worn, windy, stone, random, neuter, legible, female, asleep,

wiped

Question: Where am I located? Answer: chief’s office

Question: What is here? Answer: paper, west

Question: What do I have? Answer: nothing

Question: What attributes does paper have? Answer: legible, animate

Question: What attributes does west have? Answer: room, animate

4.3.2 Q*BERT Training

In a text-game the observation is a textual description of the environment. For every ob-

servation received, Q*BERT produces a fixed set of questions. The questions and the ob-

servation text are sent to the question-answering system. Predicted answers are converted

into 〈s, r, o〉 triples and added to the knowledge graph. The complete knowledge graph is

the input into Q*BERT’s neural architecture (described below), which makes a prediction

of the next action to take. At every step an observation consisting of several components

is received: ot = (otdesc , otgame , otinv
, at−1) corresponding to the room description, game

feedback, inventory, and previous action, and total score Rt. The room description otdesc is

a textual description of the agent’s location, obtained by executing the command “look”.

The game feedback otgame is the simulators response to the agent’s previous action and con-
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sists of narrative and flavor text. The inventory otinv
and previous action at−1 components

inform the agent about the contents of its inventory and the last action taken respectively.

Each of these components is processed using a GRU based encoder utilizing the hidden

state from the previous step and combined to have a single observation embedding ot. At

each step, I update my knowledge graph Gt using ot as described in earlier in Section 4.3

and it is then embedded into a single vector gt. This encoding is based on the R-GCN and

is calculated as:

gt = f

(
Wgσ

(∑
r∈R

∑
j∈Ni

r

1

ci,r
Wr

(l)hj
(l) + W0

(l)hi
(l)

)
+ bg

)
(4.19)

Where R is the set of relations, Nir is the 1-step neighborhood of a vertex i with respect

to relation r, Wr
(l) and hj

(l) are the learnable convolutional filter weights with respect to

relation r and hidden state of a vertex j in the last layer l of the R-GCN respectively, ci,r

is a normalization constant, and Wg and bg the weights and biases of the output linear

layer. The full architecture can be found in Fig. 4.8. The state representation consists only

of the textual observations and knowledge graph. Another key use of the knowledge graph,

introduced as part of KG-A2C and described previously, is the graph mask, which restricts

the possible set of entities that can be predicted to fill into the action templates at every step

to those found in the agent’s knowledge graph.

A2C training starts with calculating the advantage of taking an action in a stateA(st, at),

defined as the value of taking an action Q(st, at) compared to the average value of taking

all possible admissible actions in that state V (st):

A(st, at) = Q(st, at)− V (st) (4.20)

Q(st, at) = E[rt + γV (st+1)] (4.21)

The value is predicted by the critic as shown in Fig. 4.8 and rt is the reward received at step

t.
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The action decoder or actor is then updated according to the gradient:

−∇θ(logπT(τ |st; θt) +
n∑
i=1

logπOi
(oi|st, τ, ..., oi−1; θt))A(st, at) (4.22)

updating the template policy πT and object policies πOi
based on the fact that each step

in the action decoding process is conditioned on all the previously decoded portions. The

critic is updated with respect to the gradient:

1

2
∇θ(Q(st, at; θt)− V (st; θt))

2 (4.23)

bringing the critic’s prediction of the value of being in a state closer to its true underlying

value. An entropy loss is also added:

LE(st, at; θt) =
∑

a∈V (st)

P (a|st)logP (a|st) (4.24)

4.3.3 Graph Evaluation

I evaluate the quality of the knowledge graph construction in a supervised setting. Next

I perform an end-to-end evaluation in which knowledge graph construction is used by

Q*BERT.

Table 4.7 shows the QA performance, and consequently the accuracy of the knowledge

graphs built during exploration, on the Jericho-QA dataset using the rules-based approach

of KG-A2C and the trained Albert-QA model in Q*BERT. Exact match (EM) is the per-

centage of times the model was able to predict the exact answer string, while F1 measures

token overlap between prediction and ground truth. I observe a direct correlation between

the quality of the extracted graph and an agent’s performance on the games—Q*BERT in

general possessing knowledge graphs of much higher quality than KG-A2C. On games

where Q*BERT performed comparatively better than KG-A2C in terms of asymptotic
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Table 4.6: Ground truth knowledge graph experiment results.

Expt. Q*BERT MC!Q*BERT
Game Reward X X
Intrinsic Motive X
Metric Eps. Max Max
zork1 34.5 35 42
library 4.5 18 19
detective 246.1 288 338
balances 10 10 10
pentari 52.7 56 58
ztuu 5 5 12
ludicorp 18 19 23
deephome 1 1 6
temple 8 8 8

scores (columns 7 and 9), e.g. detective, the QA model had relatively high EM and F1,

and vice versa as seen with ztuu. In general Q*BERT reaches comparable asymptotic

performance to KG-A2C on 7 out of 9 games. However, as illustrated on zork1 in Fig-

ure 4.9, Q*BERT reaches asymptotic performance faster than KG-A2C, indicating that the

QA model improves learning; this trend is consistent on other games as shown in addi-

tional plots in Appendix B.2. Both agents rely on the graph to constrain the action space

and provide a richer input state representation. Q*BERT uses a QA model fine-tuned on

regularities of a text-game producing more relevant knowledge graphs than those extracted

by OpenIE (Angeli et al. 2015) in KG-A2C for this purpose.

Further, in Table 4.6, I present results for the agents when given the ground truth knowl-

edge graphs directly from the game engine. I see marginally greater performance across the

board when compared to agents using constructed knowledge graphs (seen in Table 4.7).

Q*BERT, when given a ground truth knowledge graph, shows matching or higher perfor-

mance on 8 out of 9 games—with the sole exception being library.

Reinforcement learning offers an intuitive paradigm for exploring goal driven, con-

textually aware natural language generation. The sheer size of the natural language action

space, However, has proven to be out of the reach of existing algorithms. In this chapter I in-

troduced KG-DQN, KG-A2C, and Q*BERT—novel learning agents that demonstrates the

feasibility of scaling reinforcement learning towards natural language actions spaces with
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Table 4.7: QA results (EM and F1) on Jericho-QA test set and averaged asymptotic scores
on games by different methods across 5 independent runs. For KG-A2C and Q*BERT,
I present scores averaged across the final 100 episodes as well as max scores. Methods
using exploration strategies show only max scores because Episode Average Score (Eps.)
conflates forward progress and backtracking. Agents are allowed 106 steps for each parallel
A2C agent with a batch size of 16.

Expt. QA Graph accuracy Game reward
Agent KG-A2C Q*BERT KG-A2C Q*BERT
Metric EM F1 EM F1 Eps. Max Eps. Max

zork1 6.08 8.42 43.93 48.31 34 35 34.1 35
library 10.33 26.74 49.78 52.76 14.3 19 10.0 18
detective 7.51 10.23 60.28 63.21 207.9 214 246.1 274
balances 32.53 36.09 85.81 86.18 10 10 10 10
pentari 16.48 23.36 65.02 69.54 50.7 56 51.2 56
ztuu 14.40 21.74 49.44 49.82 6 9 5 5
ludicorp 14.47 18.48 57.58 60.95 17.8 19 18 19
deephome 3.34 3.86 9.31 9.84 1 1 1 1
temple 7.42 9.44 48.98 49.17 7.6 8 7.9 8
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Figure 4.9: Episode rewards for KG-A2C and Q*BERT.

Figure 4.10: Select ablation results on Zork1 conducted across 5 independent runs per
experiment.
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hundreds of millions of actions. The key insight to being able to efficiently explore such

large spaces is the combination of a knowledge-graph-based state space and a template-

based action space. The knowledge graph serves as a means for the agent to understand

its surroundings, accumulate information about the game, and disambiguate similar tex-

tual observations while the template-based action space lends a measure of structure that

enables us to exploit that same knowledge graph for language generation. Together they

constrain the vast space of possible actions into the compact space of sensible ones. A

suite of experiments across a diverse set of 28 human-made IF games shows wide improve-

ment over TDQN, the current state-of-the-art template-based agent. Finally, an ablation

study replicates state-of-the-art performance on Zork1 even though Q*BERT is using an

action space six orders of magnitude larger than previous agents—indicating the overall

efficacy of my combined state-action space. The additional graph extraction results show

that improving graph quality also improves sample efficiency of knowledge graph-based

reinforcement learning agents.

75



CHAPTER 5

STRUCTURED EXPLORATION

Most text-adventure games are structured as quests with high branching factors in which

players must solve a sequence of puzzles to advance the story and gain score—i.e. there

are usually multiple ways to finish a quest. To solve these puzzles, players have freedom

to a explore both new areas and previously unlocked areas of the game, collect clues, and

acquire tools needed to solve the next puzzle and unlock the next portion of the game. From

a Reinforcement Learning perspective, these puzzles can be viewed as bottlenecks that act

as partitions between different regions of the state space. Whereas the multiple pathways to

completion through puzzles may intuitively seem to make the problem easier, the opposite

is true. I contend that existing Reinforcement Learning agents that are unaware of such

latent structure and are thus poorly equipped for solving these types of problems.

In this chapter I introduce a new agent: MC!Q*BERT that builds on Q*BERT, de-

signed with this latent structure in mind. As we saw in Chapter 4, Q*BERT improves on

existing text-game agents that use knowledge graph-based state representations by framing

knowledge graph construction during exploration as a question-answering task. To train

Q*BERT’s knowledge graph extractor, I introduced the Jericho-QA dataset for question-

answering in text-games. I also showed that it leads to improved knowledge graph accuracy

and sample efficiency compared to a rules-based approach.

However, improved knowledge graph accuracy is not enough to overcome bottlenecks;

it does not improve asymptotic performance. To this end, MC!Q*BERT (Modular policy

Chaining! Q*BERT) extends Q*BERT by combining two innovations: (1) an intrinsic mo-

tivation based on expansion of its knowledge graph both as a way to encourage exploration

as well as a means for the agent to self-detect when it is stuck; and (2) by additionally

introducing a structured exploration algorithm that, when stuck on a bottleneck, will back-
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Observation: West of House You are standing in an open field west of a white house, with a boarded front door. There is a
small mailbox here.

Action: Open mailbox

Observation: Opening the small mailbox reveals a leaflet.

Action: Read leaflet

Observation: (Taken) ”WELCOME TO ZORK! ZORK is a game of adventure, danger, and low cunning. In it you will
explore some of the most amazing territory ever seen by mortals. No computer should be without one!”

Action: Go north

Observation: North of House You are facing the north side of a white house. There is no door here, and all the windows are
boarded up. To the north a narrow path winds through the trees.

Figure 5.1: Excerpt from Zork1.

track through the sequence of states leading to the current bottleneck, in search of alter-

native solutions. As MC!Q*BERT overcomes bottlenecks, it constructs a modular policy

that chains together the solutions to multiple bottlenecks. Like Go Explore (Ecoffet et al.

2021), MC!Q*BERT relies on the determinism present in many text-games to reliably re-

visit previous states. However, I show that MC!Q*BERT’s ability to detect bottlenecks via

the knowledge graph state representation enable it to outperform such alternate exploration

strategies on nine different games.

My contributions in this chapter are as follows: 1) I show that intrinsic motivation

reward based on knowledge graph expansion is capable of reliably identifying bottleneck

states. 2) Further, I show that structured exploration in the form of backtracking can be

used to overcome these bottleneck states and reach state-of-the-art levels of performance

on the Jericho benchmark (Hausknecht et al. 2020).

5.1 Understanding Bottleneck States

Overcoming bottlenecks is not as simple as selecting the correct action from the bottleneck

state. Most bottlenecks have long-range dependencies that must first be satisfied: Zork1 for

instance features a bottleneck in which the agent must pass through the unlit Cellar where
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a monster known as a Grue lurks, ready to eat unsuspecting players who enter without a

light source. To pass this bottleneck the player must have previously acquired and lit the

lantern. Other bottlenecks don’t rely on inventory items and instead require the player to

have satisfied an external condition such as visiting the reservoir control to drain water

from a submerged room before being able to visit it. In both cases, the actions that fulfill

dependencies of the bottleneck, e.g. acquiring the lantern or draining the room, are not

rewarded by the game. Thus agents must correctly satisfy all latent dependencies, most of

which are unrewarded, then take the right action from the correct location to overcome such

bottlenecks. Consequently, most existing agents—regardless of whether they use a reduced

action space (Zahavy et al. 2018; Yin and May 2019b) or the full space (Ammanabrolu

and Hausknecht 2020; Hausknecht et al. 2020)—have failed to consistently clear these

bottlenecks.

To better understand how to design algorithms that pass these bottlenecks, I first need

to gain a sense for what they are. I observe that quests in text games can be modeled in the

form of a dependency graph. These dependency graphs are directed acyclic graphs (DAGs)

where the vertices indicate either rewards that can be collected or dependencies that must be

met to progress and are generally unknown to a player a priori. In text-adventure games the

dependencies are of two types: items that must be collected for future use, and locations

that must be visited. An example of such a graph for the game of Zork1 can found in

Fig. 5.2.

More formally, bottleneck states are vertices in the dependency graph that, when the

graph is laid out topographically, are (a) the only state on a level, and (b) there is another

state at a higher level with non-zero reward. Bottlenecks can be mathematically expressed

as follows: let D = 〈V,E〉 be the directed acyclic dependency graph for a particular game

where each vertex is tuple v = 〈sl, si, r(s)〉 containing information on some state s such

that sl are location dependencies, si are inventory dependencies, and r(s) is the reward

associated with the state. There is a directed edge e ∈ E between any two vertices such

78



Loc: West of House
Inv: None

Loc: Kitchen
Inv: None

get painting
navigate

Loc: Up a Tree
Inv: Golden Egg

+5
Loc: Forest Path

Inv: None

Loc: Behind House
Inv: None

open window
Go in

get lamp
get sword
navigate

navigate

navigate

Key
Positive Rewards
Bottlenecks

Loc: Troll Room
Inv: Lamp, Sword

Loc: Gallery
Inv: Lamp, Sword,

Painting

+4

Loc: Cellar
Inv: Lamp, Sword

+25

+10

Figure 5.2: Portion of the Zork1 quest structure visualized as a directed acyclic graph.
Each node represents a state; clouds represent areas of high branching factor with labels
indicating some of the actions that must be performed to progress

that the originating state meets the requirements sl and si of the terminating vertex. D can

be topologically sorted into levels L = {l1, ..., ln}where each level represents a set of game

states that are not dependant on each other. I formulate the set of all bottleneck states in the

game:

B = {b : (|li| = 1, b ∈ li, V ) ∧ (∃s ∈ lj s.t. (j > i ∧ r(s) 6= 0))} (5.1)

This reads as the set of all states that that belong to a level with only one vertex and that

there exists some state with a non-zero reward that depends on it. Intuitively, regardless

of the path taken to get to a bottleneck state, any agent must pass it in order to continue

collecting future rewards. Behind House is an example of a bottleneck state as seen in

Fig. 5.2. The branching factor before and after this state is high but it is the only state

through which one can enter the Kitchen through the window.

5.2 Structured Exploration

This section describes MC!Q*BERT an exploration method built on Q*BERT that detects

overcomes bottlenecks by backtracking and policy chaining. This method of chaining poli-

cies and backtracking can be thought of in terms of options (Sutton et al. 1999; Stolle and

Precup 2002), where the agent decomposes the task of solving the text game into the sub-

tasks, each of which has it’s own policy. In my case, each sub-task delivers the agent to a

bottleneck state.
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Algorithm 3 Structured Exploration
{πchain, πb, π} ← φ . Chained, backtrack, current policy
{Sb,S} ← φ . Backtrack, current state buffers
s0, rinit ← ENV.RESET()
Jmax ← rinit, p← 0
for timestep t in 0...M do . Train for M Steps

st+1, rt, π ← Q*BERTUPDATE(st, π)
S ← S + st+1 . Append current state to state buffer
p← p+ 1 . Lose patience
if J (π) ≤ Jmax then

if p ≥ patience then . Stuck at a bottleneck
st, rmax, π ← BACKTRACK(πb,Sb)

. Bottleneck passed; Add π to the chained policy
πchain ← πchain + π

if J (π) > Jmax then . New highscore found
Jmax ← J (π);πb ← π;Sb ← S; p← 0

return πchain . Chained policy that reaches max score

function Q*BERTUPDATE(st, π) . One-step update
st+1, rgt ← ENV.STEP(st, π) . Section 4.3
rt ← CALCULATEREWARD(st+1, rgt) . Eq. 5.3
π ← A2C.UPDATE(π, rt) . Appendix B.2
return st+1, rt, π

function BACKTRACK(πb, Sb) . Try to overcome bottleneck
for b in REVERSE(Sb) do . States leading to highscore

s0 ← b;π ← φ
for timestep t in 0...N do . Train for N steps

st+1, rt, π ← Q*BERTUPDATE(st, π)
if J (π) > J (πb) then return st, rt, π

Terminate . Can’t find better score; Give up.

5.2.1 Bottleneck Detection using Intrinsic Motivation

Inspired by McGovern and Barto (2001), I present an intuitive way of detecting bottleneck

states such as those in Fig. 5.2—or sub-tasks—in terms of whether or not the agent’s

ability to collect reward stagnates. If the agent does not collect a new reward for a number

of environment interactions—defined in terms of a patience parameter—then it is possible

that it is stuck due to a bottleneck state. An issue with this method, however, is that the

placement of rewards does not always correspond to an agent being stuck. Complicating

matters, rewards are sparse and often delayed; the agent not collecting a reward for a while

might simply indicate that further exploration is required instead of truly being stuck.
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To alleviate these issues, I define an intrinsic motivation for the agent that leverages the

knowledge graph being built during exploration. The motivation is for the agent to learn

more information regarding the world and expand the size of its knowledge graph. This

provides us with a better indication of whether an agent is stuck or not—a stuck agent does

not visit any new states, learns no new information about the world, and therefore does

not expand its knowledge graph—leading to more effective bottleneck detection overall.

To prevent the agent from discovering reward loops based on knowledge graph changes, I

formally define this reward in terms of new information learned.

rIMt = ∆(KGglobal −KGt) where KGglobal =
t−1⋃
i=1

KGi (5.2)

Here KGglobal is the set of all edges that the agent has ever had in its knowledge graph and

the subtraction operator is a set difference. When the agent adds new edges to the graph

perhaps as a the result of finding a new room KGglobal changes and a positive reward is

generated—this does not happen when that room is rediscovered in subsequent episodes.

This is then scaled by the game score so the intrinsic motivation does not drown out the

actual quest rewards, the overall reward the agent receives at time step t looks like this:

rt = rgt + αrIMt

rgt + ε

rmax
(5.3)

where ε is a small smoothing factor, α is a scaling factor, rgt is the game reward, rmax is the

maximum score possible for that game, and rt is the reward received by the agent on time

step t.

5.2.2 Modular Policy Chaining

A primary reason that agents fail to pass bottlenecks is not satisfying all the required depen-

dencies. To solve this problem, I introduce a method of policy chaining, where the agent

uses the determinism of the simulator to backtrack to previously visited states in order to
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fulfill dependencies required to overcome a bottleneck.

Specifically, Algorithm 3 optimizes the policy π as usual, but also keeps track of a

buffer S of the distinct states and knowledge graphs that led up to each state (I use state

st to colloquially refer to the combination of an observation ot and knowledge graph KGt).

Similarly, a bottleneck buffer Sb and policy πb reflect the sequence of states and policy with

the maximal return Jmax—consisting of the cumulative intrinsic as well as game rewards.

A bottleneck is identified when the agents fails to improve upon Jmax after patience num-

ber of steps, i.e. no improvement in raw game score or knowledge-graph-based intrinsic

motivation reward. The agent then backtracks by searching backwards through the state se-

quence Sb, restarting from each of the previous states—and training for N steps in search

of a more optimal policy to overcome the bottleneck. When such a policy is found, it is

appended to modular policy chain πchain. Conversely, if no such policy is found, then I have

failed to pass the current bottleneck and the training terminates.

5.3 Evaluation

I measure the utility of the knowledge graph-based intrinsic motivation in bottleneck de-

tection and conduct an empirical comparison between MC!Q*BERT and other exploration

strategies.

5.3.1 Intrinsic Motivation and Exploration Strategy Evaluation

MC!Q*BERT. Modularly Chained Q*BERT is evaluated by first testing policy chaining

with only game reward and then with both game reward and intrinsic motivation. I pro-

vide a qualitative analysis of the bottlenecks detected with both methods with respect to

those found in Fig. 5.2 on Zork1. Because MC!Q*BERT exploits structural domain as-

sumptions that Q*BERT and KG-A2C cannot, I create a strong alternative baseline that

looks at whether modular chaining improves over a related exploration strategy used in

Go-Explore (Ecoffet et al. 2021).
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Table 5.1: Averaged asymptotic scores on games by different methods across 5 independent
runs. For KG-A2C and Q*BERT, I present scores averaged across the final 100 episodes
as well as max scores. Methods using exploration strategies show only max scores because
Episode Average Score (Eps.) conflates forward progress and backtracking. Agents are
allowed 106 steps for each parallel A2C agent with a batch size of 16.

Expt. Game reward Intrinsic
Agent KG-A2C Q*BERT MC!Q* MC!Q* GO!Q*
Metric Eps. Max Eps. Max Max Max Max

zork1 34 35 34.1 35 32 41.6 31
library 14.3 19 10.0 18 19 19 18
detective 207.9 214 246.1 274 320 330 304
balances 10 10 10 10 10 10 10
pentari 50.7 56 51.2 56 56 58 40
ztuu 6 9 5 5 5 11.8 5
ludicorp 17.8 19 18 19 19 22.8 20.6
deephome 1 1 1 1 8 6 1
temple 7.6 8 7.9 8 8 8 8

GO!Q*BERT. is a baseline that makes the same underlying assumptions regarding

the simulator as MC!Q*BERT but operates differently by tracking sub-optimal and under-

explored states in order to allow the agent to explore upon more optimal states that may

be a result of sparse rewards. This baseline trains Q*BERT in parallel to generate actions

from the full action space used for exploration. It is based on the Go-Explore (Ecoffet et

al. 2021) algorithm which consists of two phases, the first to continuously explore until a

set of promising states and corresponding trajectories are found on the basis of total score,

and the second to robustify this found policy against potential stochasticity in the game.

Promising states are defined as those states when explored from will likely result in higher

reward trajectories. Madotto et al. (2020) look at applying Go-Explore to text-games on a

set of simpler games generated using the game generation framework TextWorld (Côté et

al. 2018). They use a small set of “admissible actions”—actions guaranteed to change the

world state at any given step during Phase 1—to explore and find high reward trajectories.

When MC!Q*BERT only uses game reward it matches Q*BERT on 5 out of 9 games

and outperforms on 3 out of 9 games. When MC!Q*BERT uses intrinsic motivation plus

game reward, it strictly outperforms KG-A2C and Q*BERT on 6 out of 9 games and

matches it on the rest. MC!Q*BERT outperforms GO!Q*BERT on 7 games and matches
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Figure 5.3: Max reward curves for exploration strategies.

Figure 5.4: Select ablation results on Zork1 conducted across 5 independent runs per ex-
periment. I see where the agents using structured exploration pass each bottleneck seen
in Fig. 5.2. Q*BERT without IM is unable to detect nor surpass bottlenecks beyond the
Cellar.

on 2, indicating that the modular chaining exploration strategy exploits the intrinsic moti-

vation of knowledge graph learning better than the closest alternative exploration strategy.

5.4 Analysis

Table 5.1 shows that across all the games MC!Q*BERT matches or outperforms the current

state-of-the-art when compared across the metric of the max score consistently received

across runs. There are two main trends: First, MC!Q*BERT strongly benefits from the

inclusion of intrinsic motivation rewards. Qualitatively, I illustrate this with Zork1, the

canonical commercial text-adventure game that no RL agent has ever beaten. An analysis of

bottlenecks detected by each agent in this game reveals differences in the overall accuracy

of the bottleneck detection between MC!Q*BERT with and without intrinsic motivation.

With intrinsic motivation, across 5 independent runs, MC!Q*BERT had an average true

positive bottleneck state detection rate of 63%, false positive of 37%, with 50% coverage;

and without it has a true positive rate of 58%, false positive of 42%, with coverage of
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25%—assuming that the states such as in Fig. 5.2 represent the ground truth for bottlenecks.

Coverage here refers to the number of unique bottlenecks states found during exploration

compared to the total number of such states in the ground truth. This indicates that overall

quality of bottleneck detection significantly improves given intrinsic motivation—enabling

MC!Q*BERT to backtrack and surpass them. Figure 5.3 shows when each of these agents

detect and subsequently overcome the bottlenecks outlined in Figure 5.2.

When intrinsic motivation is not used, the agent discovers that it can get to the Kitchen

with a score of +10 and then Cellar with a score of +25 immediately after. It forgets

how to get the Egg with a smaller score of +5 and never makes it past the Grue in the

Cellar. Intrinsic motivation avoids this in two ways: (1) it makes it less focused on a locally

high-reward trajectory—making it less greedy and helping it chain together rewards for the

Egg and Cellar, and (2) provides rewards for fulfilling dependencies that would otherwise

not be rewarded by the game—this is seen by the fact that it learns that picking up the

lamp is the right way to surpass the Cellar bottleneck and reach the Painting. A similar

behavior is observed with GO!Q*BERT: the agent settles prematurely on a locally high-

reward trajectory and thus never has incentive to find more globally optimal trajectories by

fulfilling the underlying dependency graph. Here, the likely cause is due to GO!Q*BERT’s

inability to backtrack and rethink discovered locally-maximal reward trajectories.

The results seen in Table 4.6, when the agent is given the ground truth knowledge

graph, show that both Q*BERT and MC!Q*BERT perform on average better than when

using graphs built from QA (or rules in the case of KG-A2C). This shows once again that

knowledge graph accuracy is correlated to game performance, though the lower margin in-

dicates that after a certain point—i.e. the accuracy levels of Q*BERT—gains in knowledge

graph accuracy provide diminishing returns with respect to overall performance for this

particular architecture.

Overall, we see that using both the improvements to graph construction in addition to

intrinsic motivation and structured exploration consistently yields higher max scores across
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a majority of the games when compared to the rest of the methods. Having just the im-

provements to graph building or structured exploration by themselves is not enough. Thus

I infer that the full MC!Q*BERT agent is fundamentally exploring this combinatorially-

sized space more effectively by virtue of being able to more consistently detect and clear

bottlenecks. The improvement over systems using default exploration such as KG-A2C

or Q*BERT by itself indicates that structured exploration is necessary when dealing with

sparse and ill-placed reward functions.

5.5 Conclusions

Modern deep reinforcement learning agents using default exploration strategies such as ε-

greedy are ill-equipped to deal with the latent structure of dependencies and bottlenecks

found in many text-based games. To help address this challenge, I introduced two new

agents: Q*BERT, an agent that constructs a knowledge graph of the world by asking ques-

tions about it, and MC!Q*BERT, which uses intrinsic motivation to grow the graph and

detect bottlenecks arising from delayed rewards. A key insight from ablation studies is that

the graph-based intrinsic motivation is crucial for bottleneck detection, preventing the agent

from falling into locally optimal high reward trajectories due to ill-placed rewards. Policy

chaining used in tandem with intrinsic motivation results in agents that explore further in

the game by clearing bottlenecks more consistently.

I would like to conclude with a discussion on the relative differences in the assumptions

that Q*BERT and MC!Q*BERT make regarding the underlying environment. Although

both are framed as POMDPs, MC!Q*BERT makes stronger assumptions regarding the de-

terminism of the game as compared to Q*BERT. MC!Q*BERT (and GO!Q*BERT) rely

on the fact that the set of transition probabilities in a text-game are mostly deterministic.

Using this, they are able to assume that frozen policies can be executed deterministically,

i.e. with no significant deviations from the original trajectory. It is possible to robustify

such policies by extending my method of structured exploration to perhaps perform im-
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itation learning on the found highest score trajectories as seen in Phase 2 of the original

GoExplore algorithm (Ecoffet et al. 2021). Stochasticity is not among set of challenges

tackled in this work, however—I focus on learning how to better explore combinatorially-

sized spaces with underlying long-term dependencies. For future works in this space, I

believe that agents should be compared based on the set of assumptions made: agents like

KG-A2C and Q*BERT when operating under standard reinforcement learning assump-

tions, and MC!Q*BERT and GO!Q*BERT when under the stronger assumption of having

a deterministic simulator.
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CHAPTER 6

COMMONSENSE REASONING IN TEXTUAL WORLDS

Many real-world activities can be thought of as a sequence of sub-goals in a partially ob-

servable environment. These activities—getting ready to go to work, for example—are

considered trivial for humans because of commonsense knowledge. Commonsense knowl-

edge is defined as a set of facts, beliefs, and procedures shared among many people in

the same society or culture. However, to an agent learning purely by interacting with the

environment, even simple tasks can require considerable trial-and-error.

Learning a control policy for a text-adventure game requires a significant amount of

exploration, resulting in training runs that take hundreds of thousands of simulations (Am-

manabrolu and Riedl 2019b; Narasimhan et al. 2015). One reason that text-adventure

games require so much exploration is that most deep reinforcement learning algorithms are

trained on a task without a real prior. In essence, the agent must learn everything about

the game from only its interactions with the environment. Yet, text-adventure games make

ample use of commonsense knowledge (e.g., an axe can be used to cut wood) and genre

themes (e.g., in a horror or fantasy game, a coffin is likely to contain a vampire or other

undead monster). This is in addition to the challenges innate to the text-adventure game

itself—games are puzzles—which results in inefficient training.

I hypothesize that access to commonsense knowledge can enable an agent to more

quickly converge on a policy that completes common, everyday tasks. I further hypothesize

that commonsense knowledge can allow the agent to infer the presence of elements in the

world when observations are noisy or fail. While some prior text-based game playing

methods have incorporated commonsense knowledge (Murugesan et al. 2020; Fulda et al.

2017), I build off state of the art knowledge graph based techniques.

I explore the use of knowledge graphs and associated neural embeddings as a medium
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for domain transfer to improve training effectiveness on new text-adventure games. Specif-

ically, I explore transfer learning at multiple levels and across different dimensions. I first

look at the effects of playing a text-adventure game given a strong prior in the form of

a knowledge graph extracted from generalized textual walk-throughs of interactive fiction

as well as those made specifically for a given game. Next, I explore the transfer of con-

trol policies in deep Q-learning (DQN) by pre-training portions of a deep Q-network using

question-answering and by DQN-to-DQN parameter transfer between games. I evaluate

these techniques on two different sets of human authored and computer generated games,

demonstrating that my transfer learning methods enable us to learn a higher-quality control

policy faster.

I further introduce two novel approaches that incorporate commonsense knowledge into

game playing deep reinforcement learning agents using large scale pretraining, comparing

my agents to the current state-of-the-art as a baseline. (1) I use a commonsense knowledge

inference model to infer what can be known about the world based on text descriptions.

Specifically, COMET (Bosselut et al. 2019) is a neural model that takes a simple sentence

and infers what will be commonly believed about the people and objects referenced in the

sentence. (2) Because commonsense knowledge also manifests itself as procedural knowl-

edge, my final technique biases the agent toward sequences of action commands that BERT

finds probable when predicting the next sentence. I further experiment with Q*BERT using

a question-answering language model as source of commonsense knowledge.

6.1 Knowledge Graph Seeding

In this section I consider the problem of transferring a knowledge graph from a static text

resource to a DQN—which I refer to as seeding. KG-DQN uses a knowledge graph as a

state representation and also to prune the action space. This graph is built up over time,

through the course of the agent’s exploration. When the agent first starts the game, How-

ever, this graph is empty and does not help much in the action pruning process. The agent
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Figure 6.1: A select partial example of what a seed knowledge graph looks like. Ellipses
indicate other similar entities and relations not shown.

thus wastes a large number of steps near the beginning of each game exploring ineffectively.

The intuition behind seeding the knowledge graph from another source is to give the

agent a prior on which actions have a higher utility and thereby enabling more effective

exploration. Text-adventure games typically belong to a particular genre of storytelling—

e.g., horror, sci-fi, or soap opera—and an agent is at a distinct disadvantage if it doesn’t

have any genre knowledge. Thus, the goal of seeding is to give the agent a strong prior.

This seed knowledge graph is extracted from online general text-adventure guides as

well as game/genre specific guides when available.1 The graph is extracted from this the

guide using a subset of the rules described in Chapter 3 used to extract information from the

game observations, with the remainder of the RDF triples coming from OpenIE. There is no

map of rooms in the environment that can be built, but it is possible to extract information

regarding affordances of frequently occurring objects as well as common actions that can

be performed across a wide range of text-adventure games. This extracted graph is thus

potentially disjoint, containing only this generalizable information, in contrast to the graph

extracted during the rest of the exploration process. An example of a graph used to seed

1An example of a guide I use is found here http://www.microheaven.com/IFGuide/step3.html
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KG-DQN is given in Fig. 6.1. The KG-DQN is initialized with this knowledge graph.

6.2 Game Play as Question Answering

Previous work has shown that many NLP tasks can be framed as instances of question-

answering and that in doing so, one can transfer knowledge between these tasks (McCann

et al. 2017). In the abstract, an agent playing a text adventure game can be thought of as

continuously asking the question “What is the right action to perform in this situation?”

When appropriately trained, the agent may be able to answer the question for itself and

select a good next move to execute. Treating the problem as question-answering will not

replace the need for exploration in text-adventure games. However, I hypothesize that

it will cut down on the amount of exploration needed during testing time, theoretically

allowing it to complete quests faster; one of the challenges of text adventure games is that

the quests are puzzles and even after training, execution of the policy requires a significant

amount of exploration.

To teach the agent to answer the question of what action is best to take given an ob-

servation, I use an offline, pre-training approach. The data for the pre-training approach

is generated using an oracle, an agent capable of finishing a game perfectly in the least

number of steps possible. Specifically, the agent knows exactly what action to take given

the state observation in order to advance the game in the most optimal manner possible.

Through this process, I generate a set of traces consisting of state observations and actions

such that the state observation provides the context for the implicit question of ”What action

should be taken?” and the oracle’s correct action is the answer. I then use the DrQA (Chen

et al. 2017) question-answering technique to train a paired question encoder and an answer

encoder that together predict the answer (action) from the question (text observation). The

weights from the SB-LSTM in the document encoder in the DrQA system are then used

to initialize the weights of the SB-LSTM. Similarly, embedding layers of both the graph

and the LSTM action encoder are initialized with the weights from the embedding layer of
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same document encoder. Since the DrQA embedding layers are initialized with GloVe, I

am transferring word embeddings that are tuned during the training of the QA architecture.

The game traces used to train the question-answering come from a set of games of the

same domain but have different specific configurations of the environment and different

quests. I use the TextWorld framework (Côté et al. 2018), which uses a grammar to generate

random worlds and quests. The types of rooms are the same, but their relative spatial

configuration, the types of objects, and the specific sequence of actions needed to complete

the quest are different each time. This means that the agent cannot simply memorize quests.

For pre-training to work, the agent must develop a general question-answering competence

that can transfer to new quests. My approach to question-answering in the context of text

adventure game playing thus represents a form of transfer learning.

6.3 Task Specific Transfer

The overarching goal of transfer learning in text-adventure games is to be able to train an

agent on one game and use this training to improve the learning capabilities of another.

There is growing body of work on improving training times on target tasks by transferring

network parameters trained on source tasks (Yin H. and Pan 2017; Rusu et al. 2016; Ra-

jendran et al. 2017). Of particular note is the work by Rusu et al. (2016), where they train

a policy on a source task and then use this to help learn a new set of parameters on a target

task. In this approach, decisions made during the training of the target task are jointly made

using the frozen parameters of the transferred policy network as well as the current policy

network.

My system first trains a question-answering system (Chen et al. 2017) using traces

given by an oracle, as in Section 6.1. For commercial text-adventure games, these traces

take the form of state-action pairs generated using perfect walkthrough descriptions of the

game found online as described in Section 6.1.

I use the parameters of the question-answering system to pre-train portions of the deep
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Q-network for a different game within in the same domain. The portions that are pre-trained

are the same parts of the architecture as in Ammanabrolu and Riedl (2019b). This game is

referred to as the source task. The seeding of the knowledge graph is not strictly necessary

but given that state-of-the-art DRL agents cannot complete real games, this makes the agent

more effective at the source task.

I then transfer the knowledge and skills acquired from playing the source task to another

game from the same genre—the target task. The parameters of the deep Q-network trained

on the source game are used to initialize a new deep Q-network for the target task. All the

weights indicated in the architecture of KG-DQN as shown in Fig. 6.2 are transferred.

Unlike Rusu et al. (2016), I do not freeze the parameters of the deep Q-network trained

on the source task nor use the two networks to jointly make decisions but instead just use

it to initialize the parameters of the target task deep Q-network. This is done to account
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for the fact that although graph embeddings can be transferred between games, the actual

graph extracted from a game is non-transferable due to differences in structure between the

games.

6.3.1 Evaluating Commonsense Transfer

I test my system on two separate sets of games in different domains using the Jericho and

TextWorld frameworks (Hausknecht et al. 2020; Côté et al. 2018). The first set of games

is “slice of life” themed and contains games that involve mundane tasks usually set in

textual descriptions of normal houses. The second set of games is “horror” themed and

contains noticeably more difficult games with a relatively larger vocabulary size and action

set, non-standard fantasy names, etc. I choose these domains because of the availability

of games in popular online gaming communities, the degree of vocabulary overlap within

each theme, and overall structure of games in each theme. Specifically, there must be at

least three games in each domain: at least one game to train the question-answering system

on, and two more to train the parameters of the source and target task deep Q-networks.

A summary of the statistics for the games is given in Table 6.1. Vocabulary overlap is

calculated by measuring the percentage of overlap between a game’s vocabulary and the

domain’s vocabulary, i.e. the union of the vocabularies for all the games I use within

the domain. I observe that in both of these domains, the complexity of the game increases

steadily from the game used for the question-answering system to the target and then source

task games.

I perform ablation tests within each domain, mainly testing the effects of transfer from

seeding, oracle-based question-answering, and source-to-target parameter transfer. Addi-

tionally, there are a couple of extra dimensions of ablations that I study, specific to each

of the domains and explained below. All experiments are run three times using different

random seeds. For all the experiments I report metrics known to be important for transfer

learning tasks (Narasimhan et al. 2017; Taylor and Stone 2009): average reward collected
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Table 6.1: Game statistics.

Slice of life Horror
QA/Source Target QA Source Target
TextWorld 9:05 Lurking Horror Afflicted Anchorhead

Vocab size 788 297 773 761 2256
Branching factor 122 677 - 947 1918
Number of rooms 10 7 25 18 28
Completion steps 5 25 289 20 39
Words per obs. 65.1 45.2 68.1 81.2 114.2
New triples per obs. 6.4 4.1 - 12.6 17.0
% Vocab overlap 19.70 21.45 22.80 14.40 66.34
Max. aug. reward 5 27 - 21 43

in the first 50 episodes (init. reward), average reward collected for 50 episodes after con-

vergence (final reward), and number of steps taken to finish the game for 50 episodes after

convergence (steps). For the metrics tested after convergence, I set ε = 0.1 following both

Narasimhan et al. (2015) and Ammanabrolu and Riedl (2019b). I use similar hyperparam-

eters to those reported in Ammanabrolu and Riedl (2019b) for training the KG-DQN with

action pruning, with the main difference being that I use 100 dimensional word embeddings

instead of 50 dimensions for the horror genre.

6.3.2 Slice of Life Experiments

TextWorld uses a grammar to generate similar games. Following Ammanabrolu and Riedl

(2019b), I use TextWorld’s “home” theme to generate the games for the question-answering

system. TextWorld is a framework that uses a grammar to randomly generate game worlds

and quests. This framework also gives us information such as instructions on how to finish

the quest, and a list of actions that can be performed at each step based on the current world

state. I do not let my agent access this additional solution information or admissible actions

list. Given the relatively small quest length for TextWorld games—games can be completed

in as little as 5 steps—I generate 50 such games and partition them into train and test sets in

a 4:1 ratio. The traces are generated on the training set, and the question-answering system

is evaluated on the test set.

I then pick a random game from the test set to train my source task deep Q-network
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Figure 6.3: Partial unseeded knowledge graph example given observations and actions in
the game 9:05.

for this domain. For this training, I use the reward function provided by TextWorld: +1

for each action taken that moves the agent closer to finishing the quest; -1 for each action

taken that extends the minimum number of steps needed to finish the quest from the current

stage; 0 for all other situations.

I choose the game, 9:052 as my target task game due to similarities in structure in

addition to the vocabulary overlap. Note that there are multiple possible endings to this

game and I pick the simplest one for the purpose of training my agent.

2https://ifdb.tads.org/viewgame?id=qzftg3j8nh5f34i2
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Figure 6.4: Partial unseeded knowledge graph example given observations and actions in
the game Anchorhead.

6.3.3 Horror Experiments

For the horror domain, I choose Lurking Horror3 to train the question-answering system

on. The source and target task games are chosen as Afflicted4 and Anchorhead5 respec-

tively. However, due to the size and complexity of these two games some modifications to

the games are required for the agent to be able to effectively solve them. I partition each of

these games and make them smaller by reducing the final goal of the game to an intermedi-

ate checkpoint leading to it. This checkpoints were identified manually using walkthroughs

of the game; each game has a natural intermediate goal. For example, Anchorhead is seg-

3https://ifdb.tads.org/viewgame?id=jhbd0kja1t57uop
4https://ifdb.tads.org/viewgame?id=epl4q2933rczoo9x
5https://ifdb.tads.org/viewgame?id=op0uw1gn1tjqmjt7
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Figure 6.5: Reward curve for select experiments in the slice of life domain.

Table 6.2: Results for the slice of life games. “KG-DQN Full” refers to KG-DQN when
seeded first, trained on the source, then transferred to the target. All experiment with QA
indicate pre-training. S, D indicate sparse and dense reward respectively.

Experiment Init. Rwd. Final Rwd. Steps
Source Game (TextWorld)
KG-DQN no transfer 2.6 ± 0.73 4.7 ± 0.23 110.83 ± 4.92

KG-DQN w/ QA 2.8 ± 0.61 4.9 ± 0.09 88.57 ± 3.45
KG-DQN seeded 3.2 ± 0.57 4.8 ± 0.16 91.43 ± 1.89

mented into 3 chapters in the form of objectives spread across 3 days, of which I use only

the first chapter. The exact details of the games after partitioning is described in Table 6.1.

For Lurking Horror, I report numbers relevant for the oracle walkthrough. I then pre-prune

the action space and use only the actions that are relevant for the sections of the game that

I have partitioned out. The majority of the environment is still available for the agent to

explore but the game ends upon completion of the chosen intermediate checkpoint.

6.3.4 Reward Augmentation

The combined state-action space for a commercial text-adventure game is quite large and

the corresponding reward function is very sparse in comparison. The default, implied

reward signal is to receive positive value upon completion of the game, and no reward

value elsewhere. This is problematic from an experimentation perspective as text-adventure

games are too complex for even state-of-the-art deep reinforcement learning agents to com-
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plete. Even using transfer learning methods, a sparse reward signal usually results in inef-

fective exploration by the agent.

To make experimentation feasible, I augment the reward to give the agent a dense re-

ward signal. Specifically, I use an oracle to generate state-action traces (identical to how as

when training the question-answering system). An oracle is an agent that is capable of play-

ing and finishing a game perfectly in the least number of steps possible. The state-action

pairs generated using perfect walkthroughs of the game are then used as checkpoints and

used to give the agent additional reward. If the agent encounters any of these state-action

pairs when training, i.e. performs the right action given a corresponding state, it receives

a proportional reward in addition to the standard reward built into the game. This reward

is scaled based on the game and is designed to be less than the smallest reward given by

the original reward function to prevent it from overpowering the built-in reward. I refer to

agents using this technique as having “dense” reward and “sparse” reward otherwise. The

agent otherwise receives no information from the oracle about how to win the game.

The structure of the experiments are such that the for each of the domains, the target

task game is more complex that the source task game. The slice of life games are also

generally less complex than the horror games; they have a simpler vocabulary and a more

linear quest structure. Additionally, given the nature of interactive fiction games, it is nearly

impossible—even for human players—to achieve completion in the minimum number of

steps (as given by the steps to completion in Table 6.1); each of these games are puzzle

based and require extensive exploration and interaction with various objects in the environ-

ment to complete.

Table 6.2 and Table 6.3 show results for the slice of life and horror domains, respec-

tively. In both domains seeding and QA pre-training improve performance by similar

amounts from the baseline on both the source and target task games. A series of t-tests

comparing the results of the pre-training and graph seeding with the baseline KG-DQN

show that all results are significant with p < 0.05. Both the pre-training and graph seeding
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Figure 6.6: Reward curve for select experiments in the horror domain.

Table 6.3: Results for horror games. Note that the reward type is dense for all results.
“KG-DQN Full“ refers to KG-DQN seeded, transferred from source. All experiment with
QA indicate pre-training.

Experiment Init. Rwd. Final Rwd. Steps
Source Game (Afflicted)
KG-DQN no transfer 3.0 ± 1.3 14.1 ± 1.73 1934.7 ± 85.67

KG-DQN w/ QA 4.3 ± 1.34 15.1 ± 1.60 1179 ± 32.07
KG-DQN seeded 4.1 ± 1.19 14.6 ± 1.26 1125.3 ± 49.57

Target Game (Anchorhead)
KG-DQN untuned - 3.8 ± 0.23 -

KG-DQN no transfer 1.0 ± 0.34 6.8 ± 0.42 -
KG-DQN w/ QA 3.6 ± 0.91 24.8 ± 0.6 4874 ± 90.74
KG-DQN seeded 1.7 ± 0.62 26.6 ± 0.42 4937 ± 42.93

KG-DQN full 4.1 ± 0.9 39.9 ± 0.53 4334.3 ± 56.13

perform similar functions in enabling the agent to explore more effectively while picking

high utility actions.

Even when untuned, i.e. evaluating the agent on the target task after having only trained

on the source task, the agent shows better performance than training on the target task from

scratch using the sparse reward. As expected, we see a further gain in performance when

the dense reward function is used for both of these domains as well. In the horror domain,

the agent fails to converge to a state where it is capable of finishing the game without the

dense reward function due to the horror games being more complex.

When an agent is trained using on just the target task horror game, Anchorhead, it does

not converge to completion and only gets as far as achieving a reward of approximately
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7 (max. observed reward from the best model is 41). This corresponds to a point in the

game where the player is required to use a term in an action that the player has never

observed before, “look up Verlac” when in front of a certain file cabinet—“Verlac“ being

the unknown entity. Without seeding or QA pre-training, the agent is unable to cut down

the action space enough to effectively explore and find the solution to progress further. The

relative effectiveness of the gains in initial reward due to seeding appears to depend on

the game and the corresponding static text document. In all situations except Anchohead,

seeding provides comparable gains in initial reward as compared to QA — there is no

statistical difference between the two when performing similar t-tests.

When the full system is used—i.e. I seed the knowledge graph, pre-train QA, then train

the source task game, then the target task game using the augmented reward function—I

see a significant gain in performance, up to an 80% gain in terms of completion steps in

some cases. The bottleneck at reward 7 is still difficult to pass, however, as seen in Fig. 6.6,

in which I can see that the agent spends a relatively long time around this reward level

unless the full transfer technique is used. I further see in Figures 6.5, 6.6 that transferring

knowledge results in the agent learning this higher quality policy much faster. In fact, I

note that training a full system is more efficient than just training the agent on a single task,

i.e. training a QA system then a source task game for 50 episodes then transferring and

training a seeded target task game for 50 episodes is more effective than just training the

target task game by itself for even 150+ episodes.

I have demonstrated that using knowledge graphs as a state representation enables effi-

cient transfer between deep reinforcement learning agents designed to play text-adventure

games, reducing training times and increasing the quality of the learned control policy.

My results show that I are able to extract a graph from a general static text resource and

use that to give the agent knowledge regarding domain specific vocabulary, object affor-

dances, etc. Additionally, I demonstrate that I can effectively transfer knowledge using

deep Q-network parameter weights, either by pre-training portions of the network using a
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question-answering system or by transferring parameters from a source to a target game.

My agent trains faster overall, including the number of episodes required to pre-train and

train on a source task, and performs up to 80% better on convergence than an agent not

utilizing these techniques.

I conclude that knowledge graphs enable transfer in deep reinforcement learning agents

by providing the agent with a more explicit–and interpretable–mapping between the state

and action spaces of different games. This mapping helps overcome the challenges twin

challenges of partial observability and combinatorially large action spaces inherent in all

text-adventure games by allowing the agent to better explore the state-action space.

6.4 Commonsense via Large Scale Pre-training

I experiment with three agents, each with their own approach for incorporating common-

sense knowledge to augment policy learning. All three agents build off the KG-A2C (Am-

manabrolu and Hausknecht 2020) agent framework, which is shown in Figure 6.7. At

every step, KG-A2C uses a heuristic information extraction process to identify 〈 subject,

relation, object 〉 triples in the current room’s text description. These triples are added to

an ever-growing knowledge graph, which is embedded and used to inform the choice of

action (text command). The knowledge graph is the agent’s belief about the state of the

world experienced to date. KG-A2C filters out actions that contain object references not

contained in the graph.

The COMET-A2C Agent. This agent is similar to Q*BERT but replaces ALBERT

with COMET Bosselut et al. (2019), a neural commonsense inference model (Figure 6.7).

I use the version of COMET trained on the ConceptNet (Speer and Havasi 2012) dataset

to take text sentences and generate a number of short phrases that may be inferred from

the input text. COMET produces several types of inference templates. I specifically use

COMET’s HasA inference class. COMET-A2C uses KG-A2C’s information extraction

process to produce 〈subject, relation, object〉 triples; relationships inferred by COMET

102



Recurrent Encoders
for each input type

 Information
Extraction

Graph 
Update COMET

OR

ALBERT

Room description; game feedback; inventory; previous action

Graph Attention
Network

Multilayer
Perceptron

Linear

Value

Recurrent
Decoder

Command

New
KG

Old KG

CriticActor

Differentiable

Pre-trained

Non-Differentiable

Figure 6.7: Augmented KG-A2C architecture.

are then added. I hypothesize that COMET will make the agent’s understanding of the

world state more robust by inferring the existence of objects commonly found in certain

types of locations. Figure 6.8 shows an example of the knowledge graph generated by

COMET-A2C for a given text description.

The KG-A2C-BERT Agent. This agent is identical to KG-A2C, except that it uses

a policy-shaping method for exploration (Griffith 2018). Policy-shaping is a technique

whereby an external source of knowledge is used to re-rank a distribution over output ac-

tions during training. KG-A2C-BERT samples the top k action commands generated by the

network and scores each based on a history of previous commands. This is done by con-

catenating the currently proposed command to prior commands and use BERT to compute

Pθ(ct|c1...ct−1) where ci is a command at time step t and θ is BERT’s pre-trained weights.

The k candidate commands are re-ranked according to the score and the agent re-samples
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Figure 6.8: Knowledge Graph generated by COMET-A2C for the observation: This is a far
from luxurious but still quite functional bathroom. The bedroom lies to the north.

Original observation
Bathroom
This is a far from luxurious but still quite functional bathroom, with a sink, toilet and shower. The bedroom lies to the
north.

Modified Observation
Bathroom
This is a far from luxurious but still quite functional bathroom. The bedroom lies to the north.

Figure 6.9: The original and modified observation for the Bathroom in 9:05.

from the new distribution. In Figure 6.7 the green box is removed and re-ranking is applied

to the output of the actor module.

The Q*BERT Agent. Q*BERT( 4), which augments the knowledge graph by using the

pre-trained question-answering model, ALBERT (Lan et al. 2020). ALBERT is first fine-

tuned on a dataset specific to the text-game domain. Q*BERT generates questions about the

current room environment and ALBERT’s answers are converted into 〈subject, relation, object〉

and added to the knowledge graph (Figure 6.7). While Q*BERT was not explicitly design

with commonsense knowledge in mind, I hypothesize that ALBERT can extrapolate from

room text description using knowledge acquired through training on a large corpus of texts.
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6.4.1 Evaluating Commonsense Pre-training

I conduct experiments in the 9:05 slice of life text-based game. In this game, the player

must get ready for work by taking a shower, wearing clean clothes and then travel to the

workplace by car. The game provides a single reward of 1 or 0 at the end. The branching

factor is very high and the only reward requires 25-30 steps executed in the perfect order.

Due to the extreme sparseness of this feedback, all agents struggle to make any significant

progress. Consequently, I provide a shaped reward function to add reward density. The

agent is rewarded +1 for each of six different actions necessary to complete the task of

taking a shower (Appendix A3). These states may only be observed in sequence and loops

cannot occur.

I conducted two experiments. (1) I assess performance in a version of 9:05 where

reward is given for passing key states. (2) I test agents’ performance when required to sup-

plement missing/failed observations with commonsense inferences. A modified version

of 9:05 has the shaped reward but also deletes all textual references to three critical ob-

jects; the sink, toilet, and shower are omitted from the bathroom description. See

Figure 6.9 This approximates situations where the agent’s observations may have failed to

observe the objects, or to correctly parse and extract relations pertaining to these objects.

It also simulates the way in which humans recognize that it is unnecessary or obvious to

state facts that everyone would likely agree upon. The objects were not removed, only their

mentions in the text descriptions.

6.4.2 Results and Analysis

Experiment 1 results are shown in Figure 6.10 (left), which plots reward per time step

averaged over five runs. The solid lines are the smoothed mean reward and the shaded

areas show one standard deviation of reward values. KG-A2C gets stuck after entering the

bathroom and never makes it to the shower. KG-A2C-BERT can make it to reward 5 but

does so unreliably—well outside the standard deviation. Since this is rarely achieved, the
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Figure 6.10: Reward performance for all agents on 9:05 with full observations (left) and
modified observations (right). The solid lines show a smoothed average performance with
standard deviation over 5 independent runs.

average performance is similar to that of KG-A2C.

COMET-A2C and Q*BERT are both able to get past the shower (reward 6) and to the

next phase of the game where player drives to work. Their performances in this experi-

ment are not significantly different, although Q*BERT achieves reward 6 or greater more

frequently and thus has a higher mean reward.

Experiment 1 validates that commonsense knowledge helps agent performance in 9:05,

which makes heavy use of locations and situations that also commonly occur in the real

world. KG-A2C-BERT performs better than KG-A2C because BERT informs the agent’s

exploration by comparing action command sequences to patterns BERT recognizes. How-

ever, exploration is stochastic and it rarely progresses far into the game. COMET-A2C

adds HasA relations to the knowledge graph and this helps correlate a richer state with the

best action to take. Q*BERT likely performs better to COMET-A2C due to richer, more

diverse correlations between state and action; this may help navigate actions between the

key rewarded steps.

The results for Experiment 2 are shown in Figure 6.10 (right). In this experiment,

agents contend with missing object references in room descriptions. KG-A2C never makes

it past a score of 2. It enters the bathroom but cannot complete any tasks due to the inability

to directly observe the sink, toilet, or shower. KG-A2C-BERT’s performance is identical

to KG-A2C because action commands are filtered out that do not reference objects in the
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knowledge graph. Whereas filtering normally reduces unlikely exploration, it hurts when

the agent fails to observe objects or observations are unreliable.

COMET-A2C and Q*BERT are able to use the sink, toilet, and shower to successfully

complete all the tasks required in the bathroom which leads to greater reward. As with

Experiment 1, both COMET-A2C and Q*BERT are able to occasionally progress beyond

the bathroom—beyond reward 6. As before, Q*BERT has a non-significantly higher aver-

age reward because it more consistently passes the shower task, whereas COMET-A2C has

more variance in performance.

Experiment 2 confirms my intuitions about the role that commonsense inferences are

playing in the agent’s decision-making. By making the presence of key objects in a location

implicit instead of explicit, I verify in a controlled fashion that commonsense inferences

beneficially augments agents’ senses. The difference in performance between Q*BERT

and COMET-A2C is due to the way they infer commonsense information as detailed earlier.

Both infer the existence of the missing entities, allowing them to progress through the game.

It is natural for commonsense details to be omitted in natural language. This work

demonstrates a deep reinforcement learning framework for “acting through language” can

be made more robust to real-world natural language phenomena such as assumptions that

an interlocutor shares commonsense knowledge. To that end, experiments with agents that

can conduct activities while interacting with common natural language phenomena may

lead to agents that are better at interacting with humans.

I conducted experiments in slice of life text-based games to understand how common-

sense knowledge can help agents handle puzzles which are simulacrum of real world loca-

tions and scenarios. Slice of life games, and 9:05 in particular, require the player to recreate

behavior that might be also conducted routinely in the real-world. My experiments show

that commonsense inferences—regardless of the source of commonsense inference—can

be used to augment an agent’s beliefs about the state of the world, making the agent more

robust to failed observations or intentional omissions in environment descriptions.
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CHAPTER 7

LEARNING TO BALANCE ACTIONS AND DIALOGUE

This chapter builds on LIGHT (Urbanek et al. 2019), a large-scale crowdsourced fantasy

text-adventure game, consisting of a set of locations, characters, and objects possesses rich

textual worlds. On top of the other text-game related challenges tackled earlier, the primary

core challenge for the agent here is to operate in spaces where the agent can both act as well

as speak to other characters using dialogue. This requires the recognition that dialogue can

also be used to change the environment. With dialogue, an agent can now learn to instruct

or convince other characters in the world to achieve the goal for it—e.g. convince the

pirate through dialogue to give you their treasure instead of just stealing it yourself. The

agent needs to learn to balance both its ability to speak as well as act in order to effectively

achieve its goals (Ammanabrolu et al. 2021).

LIGHT contains rich descriptions of textual worlds without any notion of goals to train

goal-driven agents. I present a dataset of quests for LIGHT and demonstrations of humans

playing these quests (as seen in Figures 7.2 and 7.3), providing natural language descrip-

tions in varying levels of abstraction of motivations for a given character in a particular

setting. In the example in Figure 7.2, a potential short term motivation for a dragon who

has lost its golden egg is to recover it, but the underlying goal in the long run is to build as

large a treasure hoard as possible.

To complete these quests, an agent must reason about potential actions and utterances

based on incomplete descriptions of the locations, objects, and other characters. When a

human is placed in a fantasy setting such as LIGHT, they already know that kings are roy-

alty and must be treated respectfully, swords are weapons, etc.—commonsense knowledge

that a learning agent must acquire to ensure successful interactions. To equip agents with

relevant priors in such worlds, I built a new large-scale knowledge base by domain-adapting
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the large-scale commonsense knowledge graph ATOMIC (Sap et al. 2019) to the LIGHT

fantasy world. This knowledge base was dubbed ATOMIC-LIGHT.

Agents in these worlds need to speak naturally and act consistently with respect to their

motivations in order to make progress towards achieving the goals outlined by them. I

then introduce a reinforcement learning (RL) system that incorporates large-scale language

modeling and the above commonsense-based pre-training. I show that RL is superior to

behavior cloning or other supervised training on our data; and that carefully combining

pre-training with RL is superior to either.

However, I find that although pre-training can be an effective tool in this setting, it re-

quires more finesse than in the standard supervised setting. In particular, I find that simply

pre-training a model on a large “generic” corpus (Sap et al. 2019; Baumgartner et al. 2020)

of commonsense/language data or pre-training on the domain specific LIGHT corpus, and

then fine-tuning via RL is less effective than training RL from scratch. Furthermore, by

carefully combining general and domain-specific pre-training, I observe large improve-

ments over RL from scratch.

In short, the contributions of this chapter are threefold: (1) A dataset of quests, LIGHT-

Quests, and a companion fantasy themed commonsense knowledge graph ATOMIC-LIGHT;

(2) a reinforcement learning architecture and training methodology that use these datasets

to create goal-driven agents that act and speak in the LIGHT environment; and (3) Empir-

ical zero-shot evaluations based on human quest demonstrations and an analysis of large-

scale transformer-based pre-training trends in static vs. interactive settings, showing that I

have trained agents that act consistently and speak naturally with respect to their motiva-

tions.

7.1 LIGHT-Quests and ATOMIC-LIGHT

This section first provides a brief overview of the LIGHT game environment, followed

by specific descriptions of the LIGHT-Quests and ATOMIC-LIGHT datasets used in this
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Setting You are in the Dangerous Precipice. The dangerous precipice overlooks the valley below. The ground slopes down to
the edge here. Dirt crumbles down to the edge of the cliff. There’s a dragon crescent, a knight’s armor, a golden dragon
egg, and a knight’s fighting gear here. A knight is here.You are carrying nothing.

Partner: Knight.
Persona I am a knight. I come from a lower-ranking noble family. I serve under the king, as my father did before me. In times

of war, I fight on horseback.
Carrying knight’s armor, golden dragon egg, knight’s fighting gear
Self: A dragon.
Persona I am a dragon living in the mountains. I enjoy hoarding treasure. I terrorize the local populace for fun.

Carrying Nothing.

Figure 7.1: Setting and character information for both self and partner characters as taken
from LIGHT.

Motivations: Timeline:
-4 hours go to dangerous precipiceShort I need to recover the dragon egg that was stolen and punish the knight. -15 min get knights armor from knight
-10 min get golden dragon egg

Now hit knightMid I need to return the golden dragon egg to my treasure hoard.
+5 min put dragon egg on back

+15 min eat the knightLong I need to build the largest hoard ever attained by any one dragon. +2 hours go to the mountains

Figure 7.2: Motivations with different levels of abstractions and corresponding sequence
of timeline actions in chronological order for the self character in LIGHT-Quests. There
are 7486 quests in total.

Insssssolent pessst! I should immolate you for this tresssspasss.

And why is that, dragon?

Ssstealing my preccciousss golden egg! I’ll tell you what, I’ll give you 10 sssseconds to amussse me with your sssstory and THEN
I’ll burn you alive!

You said you wanted to attack me, dragon, did you not?

Go ahead, I’m lisssssstening.
get golden dragon egg

Now now! I would have given you that had you asked!

Assssssk for my own property back? What a riduculousss notion

Look here, I told you to watch your mouth and you didn’t, so leave or I’ll make you leave.

And now threatsss! Thisss is proving to be a mossst engaging conversssation.
hit knight

Give my regardsss to the valley floor below!

Figure 7.3: Example of a demonstration of a human (blue shaded) completing the above
quest while role-playing as the self character with a partner agent (grey shaded). There are
2111 such human demonstrations of average sequence length 12.92, consisting of 22672
dialogues in total.

chapter.

As mentioned in Chapter 2, recall that LIGHT game environment is a multi-user fan-

tasy text-adventure game consisting of a rich, diverse set of characters, locations, and ob-

jects (1775 characters, 663 locations, and 3462 objects). Characters are able to perform

templated actions to interact with both objects and characters, and can speak to other char-

acters through free form text. Actions in text games generally consist of verb phrases (VP)
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followed optionally by prepositional phrases (VP PP). For example, get OBJ, put OBJ, give

OBJ to CHAR, etc.. There are 13 types of allowed verbs in LIGHT. These actions change

the state of the world which is expressed to the player in the form of text descriptions.

7.1.1 LIGHT-Quests

Figures 7.1, 7.2, and 7.3 summarize the data that I collected for LIGHT-Quests. Data is

collected via crowdsourcing in two phases, first the quests then demonstration of humans

playing them. During the first phase, crowdworkers were given a setting, i.e. situated in a

world, in addition to a character and its corresponding persona and asked to describe in free

form text what potential motivations or goals could be for that character in the given world.

The kind of information given to the crowdworkers is seen in Figure 7.1. Simultaneously,

they were also asked to provide a sequence of seven timeline actions—one action that needs

to be completed now and three before and after at various user-defined intervals—for how

the character might go about achieving these motivations.

Given the information in Figure 7.1, the crowdworkers completed the above outlined

tasks and produce data as seen in Figure 7.2. Motivations come in three levels of abstraction—

short, mid, and long—corresponding to differing amounts of the timeline. For example, the

short motivation is always guaranteed to correspond most closely to the now position on

the timeline. Action annotation is pre-constrained based on the classes of verbs available

within LIGHT. The rest of the action is completed as free form text as it may contain novel

entities introduced in the motivations. There are 5982 training, 756 validation, and 748 test

quests. Further details regarding the exact data collection process and details of LIGHT-

Quests are found in Appendix B.4.

After collecting motivation and timelines for the quests, I deployed a two-player version

of the LIGHT game, letting players attempt the quests for themselves in order to collect hu-

man demonstrations. Figure 7.3 shows an example human expert demonstration of a quest.

Players were given a character, setting, motivation, and a partner agent and left to freely act
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in the world and talk to the partner in pursuit of their motivations. The partner agent is a

fixed poly-encoder transformer model (Humeau et al. 2020) trained on the original LIGHT

data as well as other human interactions derived via the deployed game—using 111k utter-

ances in total. Players first receive a role-playing score on a scale of 1-5 through a Dungeon

Master (DM), a learned model that ranks how likely their utterances are given the current

context. Once they have accumulated a score reaching a certain threshold, they are allowed

to perform actions. I employ this gamification mechanism to encourage players to role-play

their character persona and its motivations, leading to improved user experience and data

quality (Horsfall and Oikonomou 2011). They are then given further reward if the actions

they perform sequentially match those on the timeline for the given quest. The game ends

after a maximum of six turns of dialogue per agent, i.e. twelve in total. The average se-

quence of a human demonstration is 12.92, with an average action sequence length of 2.18

and dialogue of 10.74. There are 1800 training, 100 validation, and 211 test human expert

demonstrations after the data was filtered. Additional details and examples are found in

Appendix B.4.1.

7.1.2 ATOMIC-LIGHT

Commonsense reasoning is a critical cornerstone when building learning agents that navi-

gate spaces such as LIGHT-Quests. To this end, I domain-adapt the large-scale common-

sense knowledge base ATOMIC (Sap et al. 2019) to LIGHT. ATOMIC contains informa-

tion relevant for everyday commonsense reasoning in the form of typed if-then relations

with variables. ATOMIC is organized into a set of events, e.g. “X puts X’s trust in Y” and

annotated relation types such as “needs”, “wants”, “attributes”, and “effects” that label the

effects. It is designed to be a general atlas of commonsense data and so is neither dependent

on a specific environment or a character’s persona and motivations.

To construct ATOMIC-LIGHT, I specifically use the relations for “intents”, “effects”,

“wants” and ”needs” and expand the 〈subject, relation, object〉 triples found in the graph
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into templated natural language sentences. These sentences are then rewritten to better re-

flect the fantasy LIGHT domain. Named entities and other noun phrases in ATOMIC are

masked out and filled in using BERT (Devlin et al. 2019) fine-tuned using a masked lan-

guage model loss on the entire LIGHT and LIGHT-Quests data. I investigate the benefits

of such domain adaptation on downstream tasks in Section 7.2.3. An example of a clause

using the wants relation in ATOMIC is as follows, “PersonX puts PersonX trust in PersonY,

wants, rely on PersonY.” In ATOMIC-LIGHT, this is rewritten to: “The merchant puts the

merchant’s trust in the guard, as a result the merchant wants to rely on the guard.” Simi-

larly, an example of an effect using the needs relation is, “Before, the merchant puts the

merchant’s trust in the guard, the merchant needs to be friends with the guard.” ATOMIC-

LIGHT contains 216686 training, 35340 validation, and 38565 test samples.

Here I present 3 examples from ATOMIC-LIGHT for each of the 4 relation types used:

“wants”, “needs”, “intents”, and “effects”.

[Effect] princess explains briefly the situation , as a result, princess points finger

[Effect] goblin king’s healer provides care for patients , as a result, goblin king’s

healer assists patients

[Effect] witch changes men’s appearance , as a result, witch causes men stress

[Want] prince plays a commander in the war, as a result, prince wants to win

[Want] repentant person focuses purely on issues, as a result, repentant person wants to

help others

[Want] undead warrior hardens pharaoh’s mind, as a result, undead warrior wants to make

pharaoh punish people

[Intent] bandit plays a hand in the war because bandit wanted to participate

[Intent] ambassador focuses only on issues because ambassador wanted events to play out a

certain way

[Intent] son proposes another plan because son wanted to be helpful

[Need] shipwrecked survivor proposes another wayward plan because shipwrecked survivor

needed to leave this place

[Need] general proposes another way because general needed to come up with a proposal

[Need] citizen kills animals for food because citizen needed to learn to hunt
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7.2 Agents that Act and Speak

This section describes the creation of the agents that learn to act and speak conditioned on

their motivations in the LIGHT environment. The overall architecture and training are first

outlined, followed by a detailed discussion on types of encoder pre-training.

Formally, I adapt the definition of text-based games as seen in Hausknecht et al. 2020;

Côté et al. 2018 to LIGHT. They are partially observable Markov decision processes (POMDPs),

represented as a 7-tuple of 〈S, T,A,Ω, O,R, γ〉 representing the set of environment states,

conditional transition probabilities between states, the vocabulary or words used to com-

pose action commands or dialogue utterances (e.g. get sword or Hey, give me that sword!

respectively), observations returned by the game, observation conditional probabilities, re-

ward function, and the discount factor respectively. The LIGHT environment further al-

lows us to factorize the overall action space A into A as the set of possible textual ac-

tions or commands (e.g. get sword, steal coins from merchant), and U as the set of pos-

sible dialogues that can be uttered by an agent, thus making it a factored POMDP (De-

gris and Sigaud 2013). This in turn means that, for a given quest q, each expert human

demonstration D(q) = α∗0, α
∗
1...α

∗
n can be factorized into two sub-sequences of expert

demonstrations of actions and dialogue DA(q) = a∗0, a
∗
1, ...a

∗
n and DU(q) = u∗0, u

∗
1, ...u

∗
m

respectively. The factorized action spaces A and U are constructed by enumerating all

possible actions/dialogue utterances in the all human demonstrations in LIGHT-quests—

A =
⋃
q∈QDA(q);U =

⋃
q∈QDU(q) with |A| = 4710 and |U | = 22672.

7.2.1 LIGHT RL Environment

The environment as seen in Figure 7.4 consists of three components. The first is a partner

agent, which is a model trained to play other agents in the game, as in Prabhumoye et al.

2020. Next is the game engine, which determines the effects of actions on the underlying

game graph (Urbanek et al. 2019). Finally, there is the Dungeon Master (DM), which is
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trained to score the naturalness of dialogue.

Partner Agent. The partner agent is a poly-encoder transformer model (Humeau et

al. 2020) that is pre-trained on the Reddit dialogue corpus, then on LIGHT and the human

demonstrations of LIGHT-Quests. Following the format seen in Figure 7.3, the partner

agent does not have a motivation itself but is trained to react to agents with motivations.

Following Prabhumoye et al. 2020, I keep the partner model fixed during the episodes

where the LIGHT agent trains to ensure that it retains natural English semantics—avoiding

the problem of language drift by learning an emergent language with that must agree with

the partner’s usage (Lee et al. 2019).

Action Rewards via the Game Engine. All actions, either those of the agent-in-

training or the partner agent, are processed by the engine, checking for goal state completion—

hence known as act goals. For example, if the LIGHT agent had the motivation to acquire

a sword, the goal could be completed via a:

1. self act completion: where the agent acquires a sword itself by picking it up, stealing

it, convincing the partner to drop theirs so you can pick it up, etc.

2. partner act completion: where the agent uses speech to convince their partner to

achieve the goal for them (e.g., by persuading the partner to give them the sword).

Reaching an act goal provides reward ra of 1 and 0 otherwise. At each step, the engine also
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provides us with the set of valid actions. These are the subset of the action space A which

are guaranteed to be a valid change to the world from the current state st, i.e. an action to

give your partner a sword cannot be valid unless you possess the sword.

Speech Rewards via the Dungeon Master. Following prior works on using transform-

ers for automatic evaluation of natural language generation (Sellam et al. 2020), I utilize

a learned model–the Dungeon Master (DM)—to score the agent’s ability to speak. The

DM used here is a poly-encoder model trained on collected human quest demonstrations

as well as the original conversations in LIGHT. It is conditioned on quests and motivations

and thus able to provide a (noisy) indication of how natural the agent’s dialogue utterances

are given its immediate context, similarly to the function of the DM during the data col-

lection process. Given the dialogue portion of a human quest demonstration of length n,

the DM returns a reward ru of 1
2n

if an utterance was in the demonstration (for a maximum

of one time per episode for each utterance from the demonstration). A further 1
2n

is given

each time the utterance is scored as being within the top-k most likely utterances by the

DM. This naturalness objective will be hence referred to as a speech goal. These rewards

thus also denser than act goals, helping the agent learn overall. Further, similarly to the

game engine, the DM also provides a set ofM valid utterances which are theM most likely

dialogue candidates from the candidate set for the current context.

7.2.2 Training a LIGHT agent with Switch Reinforcement Learning

The overall architecture of my agent is shown in Figure 7.4. It consists of an encoder, a

switch, an action network, and a dialogue network. First, I construct the action spaces—

factorized into actions and utterances. The possible actions are the set of all actions taken

in the demonstrations (4710 total) and the possible utterances are all utterances from the

demonstrations (22672 total). The encoder network processes the setting, persona, moti-

vation, as well as the full history of actions and dialogues performed by the agent and the

partner, input as a text sequence. The features from the encoder, which here are the hidden
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states at the final layer of a transformer, are used as input by all following components of

the agent. In Section 7.3 I show how different encoder training data affects the model.

Next, a switch module makes the decision regarding whether the agent should act or

talk in the current context and activates the corresponding policy network. In this work, the

switch is simple: it outputs an action every k dialogue utterances; where during training k

is chosen to match the ratio of utterances to actions on that particular quest from the human

demonstrations, and during testing, k is chosen to match the average action to utterance

ratio. Both the action and dialogue policies consist of a a single GRU layer followed by

an n-layer feed-forward network given input features from the encoder. Once the LIGHT

agent has output an utterance or action, it is processed by the environment—the partner

agent, the game engine and the DM.

I use A2C (Mnih et al. 2016) to train the LIGHT agent, treating the two policy networks

as two separate actors with a shared critic. The shared critic is motivated by the concepts

of self act completion and partner act completion seen in Section 7.2.1 where the LIGHT

agent can speak to convince the partner to achieve an act goal. Each agent in a batch is ini-

tialized via priority sampling (Graves et al. 2017) with a different quest, i.e. quests that the

agent has historically successfully completed less often are given a greater weight when

sampling from the pool of all possible training quests. In addition to a normal entropy

regularization term, I also add a regularization term that encourages the models to pro-

duce “valid” outputs as judged by the game engine and the DM for actions and utterances

respectively.

Following Chapter 4, I introduce two additional entropy loss terms to speed up explo-

ration.

LA(st, at; θAt) =
N∑
i=1

(yailogπA(ai|st) + (1− yai)(1− logπA(ai|st)) (7.1)
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LU(st, ut; θUt) =
M∑
i=1

(yuilogπU(ui|st) + (1− yui)(1− logπU(ui|st)) (7.2)

yai =

 1 ai ∈ Avalid(st)

0 else
yoi =

 1 ui ∈ Uvalid(st)

0 else

Each of these loss terms are only applied to the relevant policy network, i.e. LA to the action

network and LU to the dialogue network. These terms provide an additional training signal

to the policy networks regarding which actions and dialogue are contextually relevant via

additional entropy regularization over the valid actions. Similarly to the results found in

Chapter 4,, preliminary experiments in this domain suggest that these terms reduce the

number of environment steps required to reach asymptotic performance by a couple orders

of magnitude.

A2C is a policy gradient algorithm that maximizes long-term expected reward by com-

paring the advantage A(st, a
∗
t ) of taking an action in a state to the average value of taking

a valid action as predicted by the critic V (st).

A(st, a
∗
t ) = E[rt + γV (st+1)]− V (st) where rt = rAt + rUt (7.3)

Here, a∗t is either an action or an utterance outputted by the respective policy networks.

It is also worth noting that on steps where an action is performed, rUt is always 0, but

on steps where a dialogue utterance is spoken rAt may not be 0. This corresponds to the

concepts of self act completion and partner act completion seen in Section 7.2.1 where the

LIGHT agent can speak to convince the partner to achieve an act goal. This motivates hav-

ing a shared critic between the policy networks. Both policies are then updated according
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to the gradient

−∇θ



logπA(at|st; θAt)A(st, at) + LA(st, at; θAt) +
∑

a∈A P (a|st)logP (a|st)

πS(st) = πA

logπU(ut|st; θUt)A(st, ut) + LU(st, ut; θUt) +
∑

u∈U P (u|st)logP (u|st)

πS(st) = πU

(7.4)

The additional terms seen are an overall entropy loss over the entire action A or utterance

U spaces, designed to prevent premature, sub-optimal policy convergence. Boltzmann

exploration (Sutton and Barto 1998) is used to sample actions from both actor networks

during training.

7.2.3 Encoder Pre-training Tasks

Prior work on commonsense reasoning in supervised natural language learning (Bosselut

et al. 2019) suggests that the encoder is key to overcoming the challenges posed by the

LIGHT-Quests dataset even in an RL setting. I describe a series of encoder pre-training

tasks, designed to help the LIGHT agent either act more consistently or speak more natu-

rally.

ATOMIC-LIGHT. As seen in Section 7.1, ATOMIC-LIGHT is a (domain-adapted)

fantasy commonsense knowledge graph, and as such provides priors for an agent on how

to act consistently in the world. For example, given a clause such as “The knight wishes

to slay the dragon, as a result the knight needs to acquire a sword,” the task would be to

predict the underlined text—a form of knowledge graph completion (Wang et al. 2017).

Reddit. I use a previously existing Reddit dataset extracted and obtained by a third

party and made available on pushshift.io (Baumgartner et al. 2020) seen in Roller et al.

2020. This dataset has been used in several existing dialogue-based studies and has been

shown to result in more natural conversations (Yang et al. 2018; Mazaré et al. 2018).

LIGHT-Original. The original LIGHT dataset (Urbanek et al. 2019) is organized sim-
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ilarly to the human demonstrations found in LIGHT-Quests, i.e. an interspersed sequence

of dialogue and actions collected from humans role-playing a character. The task itself is

to predict the next action or utterance given the prior dialogue history as well as the current

setting and persona for a character. They are collected in a chit-chat fashion, with no no-

tion of objectives, and so provide priors on how to generally act consistently and speak in

a fantasy world, but not directly how to complete quests.

LIGHT-Quests. Pre-training with this newly introduced dataset consists of three tasks.

(1) Bag-of-action timeline prediction in which, given a quest consisting of setting, persona,

and motivations, any one of the actions in the timeline must be predicted. (2) Sequential

timeline prediction in which, given a quest consisting of setting, persona, motivations, and

the first n actions in the timeline, the n+ 1th action must be predicted. (3) Predict the next

dialogue utterance given a human demonstration in a manner similar to the LIGHT-original

tasks. The first two tasks are designed to help the agent act consistently and the third to

help it speak naturally with respect to its motivations.

7.3 Evaluation

I conduct two ablation studies, (1) to compare the effects of the encoder pre-training tasks

in RL settings vs. supervised behavior cloning, and (2) to analyze the interplay between

actions and dialogue for self and partner act completions.

7.3.1 Encoder Pre-training Type Ablation Study

Pre-training is done on the tasks described in Section 7.2.3 by training a 12 layer trans-

former with 256 million parameters using a cross-entropy loss as seen in (Humeau et al.

2020). As seen in Figure 7.4, weights are then transferred to the Blue shaded portion of

the encoder as seen in Figure 7.4 and frozen. A further three randomly initialized-layers

are appended on to the end, indicated by the Red portions, into which gradients flow. This

is done as optimizing all the parameters of such a model via RL over a long horizon is
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both data inefficient and computationally infeasible. Additional hyperparameter details are

found in Appendix 7.3.1. I investigate the following five different pre-training models to

see how they compare on act and speech goal completions when trained with RL and in a

supervised manner with behavior cloning:

Scratch. No pre-training is done, the encoder is a 3-layer randomly initialized trans-

former and trained along with the policy networks.

General. Multi-task trained using both pushshift.io Reddit and the commonsense

dataset ATOMIC-LIGHT, giving the agent general priors on how to act and speak.

Light. Multi-task trained on all tasks in LIGHT-original and LIGHT-Quests, giving the

agent priors on how to act and speak with motivations in the LIGHT fantasy domain.

General+Light. Multi-task trained on all tasks used in the General and Light models.

Adaptive. Here I adaptively train a General+Light model that is first initialized itself

from a General model, providing additional regularization to help balance between Light

and General tasks.

Table 7.1: Sequential supervised timeline prediction.

Model All Actions Easiest Action Leave Easiest Out
Hits@1 Hits@5 Hits@10 Hits@1 Hits@1

Scratch 0.2332 0.7491 0.9176 0.4013 0.2546
No Motivations 0.1132 0.5412 0.5771 0.1886 0.164

Short Motivations 0.1856 0.6479 0.678 0.261 0.223
Long & Mid Motivations 0.1452 0.598 0.631 0.2241 0.1272
Light 0.3156 0.7854 0.9226 0.236 0.2968
General+Light 0.311 0.7772 0.9229 0.2173 0.2995

Untuned ATOMIC 0.274 0.761 0.909 0.1912 0.2677
Adaptive 0.4168 0.8012 0.9332 0.342 0.4194

No Motivations 0.16 0.6286 0.6415 0.2838 0.1966
Short Motivations 0.225 0.6592 0.8245 0.305 0.2106

Long & Mid Motivations 0.1682 0.6397 0.6499 0.281 0.1595

Supervised Pre-training Results

This section describes results from the LIGHT-Quests tasks that are described in Sec-

tion 7.2.3. Model-types are the same as those used in the encoders in Section 7.3. All
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Figure 7.5: Sequential supervised timeline prediction learning curves.

Table 7.2: Bag of Actions supervised timeline prediction.

Model All Actions Easiest Action Leave Easiest Out
Hits@1 Hits@5 Hits@10 Hits@1 Hits@1

Scratch 0.9791 1 1 0.7122 0.9721
No Motivations 0.901 1 1 0.554 0.8823

Short Motivations 0.934 1 1 0.622 0.9211
Long & Mid Motivations 0.921 1 1 0.5679 0.956
Light 0.9721 1 1 0.6552 0.9682
General+Light 0.9818 1 1 0.6472 0.9708

Untuned ATOMIC 0.9421 1 1 0.6272 0.9508
Adaptive 0.9829 1 1 0.6353 0.9768

No Motivations 0.9175 1 1 0.5756 0.9523
Short Motivations 0.9794 1 1 0.6578 0.9682

Long & Mid Motivations 0.9523 1 1 0.5812 0.9576
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Figure 7.6: Bag of Actions supervised timeline prediction learning curves.

retrieval results reported are Hits@X/100. Results are reported for all timeline actions, all

actions with the exception of the easiest action—the action at the “now” position in the

timeline, corresponding most closely to the short motivation as a result of the framing of

Mechanical Turk task—and only the easiest action prediction.
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Tables 7.1, 7.2 and Figures 7.5, 7.6 summarize these results. Some notable common

trends across these tasks are:

1. Removing motivations from the input context results in significantly lower performance—

on average ≈ 7 points lower accuracy for Bag of Actions Timeline prediction and

on average ≈ 18 percentage points lower for Sequential Timeline prediction when

averaged across Scratch and Adaptive models. Further, the short motivations proves

to be the most useful for timeline prediction tasks.

2. Pre-training on ATOMIC-LIGHT produces an average gain of≈ 4 percentage points

in accuracy in both tasks than when trained on ATOMIC without domain adaptation

alone.

3. Performance across the board increases with an increase in the number of training

quests, as seen in Figures 7.5, 7.6, with the Scratch model receiving the greatest

benefit from having more training data.

4. The Scratch model performs “best” on evaluations for the easiest action only but no

others—indicating that it has overfit to predicting the easiest action which closely

corresponds to short motivation. Likewise, the Adaptive generally has the lowest

performance for the easiest action—indicating that pre-training with the other tasks

has provided sufficient regularization to enable it to not overfit to the easiest action.

Reinforcement Learning

Table 7.3 describes the reinforcement learning results for this ablation. Models were each

zero-shot evaluated on 211 human demonstrations from the LIGHT-Quests test set for a

single episode per quest across three independent runs. Figure 7.7 shows learning curves

during training for each encoder type. I first see that performance when trained with RL, i.e.

with interactivity and environment grounding during training, results in higher performance
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Figure 7.7: Encoder types RL reward curves averaged over 3 independent runs.

Table 7.3: Encoder Type RL Zero-Shot Evaluations averaged over 3 independent runs.
Act goals and speech goals are as described in Section 7.2.1. Standard deviations for all
experiments are less than 0.01. The “Act & Speech Goals” column refers to quests where
the agent has simultaneously achieved both types of goals within the episode. Human
act goal completion = 0.6 as measured during the second phase of the LIGHT-Quests data
collection.

Model Reinforcement Learning Behavioral Cloning
Act Goals Speech Goals Act & Speech Goals Act & Speech Goals

Scratch 0.418 0.118 0.103 0.0003
General 0.146 0.040 0.028 0.00226
Light 0.115 0.028 0.022 0.0934
General+Light 0.251 0.094 0.081 0.115
Adaptive 0.420 0.330 0.303 0.147

than behavioral cloning for all the models. In both RL and behavior cloning settings the

Adaptive model outperforms all others in all the metrics.

When trained supervised (behavioral cloning), I see trends mirroring standard pre-

training in static text corpora. Transfer is easy and the Scratch model performs significantly

worse than all others; and each new task added improves the agent’s ability to speak and

act. In particular, I see that Light outperforms General, showing that the more similar the

pre-training tasks are to the downstream tasks, the better the supervised performance.

However, these trends do not hold in the RL setting. The Scratch model outperforms

everything except the Adaptive model and General outperforms Light. In part, this may

be due to specification gaming (Krakovna et al. 2020); however Adaptive does strongly

outperform Scratch in goals with dialogue. This suggests that transfer (and fine-tuning) is

not as simple in the RL setting as in the supervised setting, but still can be useful if carefully
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Table 7.4: Ability type ablations averaged across 3 runs with standard deviations less than
0.01.

Ability Scratch Adaptive
Act Speech Act & Speech Act Speech Act & Speech

Act+Speech 0.418 0.118 0.103 0.420 0.330 0.303
Act Only 0.478 - - 0.469 - -
Speech Only 0.036 0.165 0.028 0.0398 0.341 0.030
-No Speech Goals 0.0526 0.0521 0.0331 0.0673 0.0947 0.041

done. I note that domain adapative pre-training (intermediate task transfer) has previously

been shown to give modest gains in supervised learning (Phang et al. 2018; Gururangan

et al. 2020), but not with the large effects seen here for RL. Figure 7.7 further shows that

with the right combination of tasks, not only is the generalization performance better, but

training itself is more sample efficient—requiring fewer steps before reaching asymptotic

performance.

When comparing Scratch and Adaptive in the RL setting, I see that the Scratch’s act

goal completion rates are only marginally lower than the Adaptive, but the Adaptive has

much higher speech goal completion resulting in an overall higher joint act & speech goal

completion rates. Additionally, in Figure 7.7 I see that during training, both Scratch and

Adaptive reach similar goal completion rates for act and speech but the gap in zero-shot

performance on novel data is much greater for speech than act. I hypothesize that this,

in-part, is due to the differences in reward functions. Act goals are decided by the game

engine and constitute ground truth, whereas speech goals during training are at least par-

tially decided by the DM, a learned and therefore more noisy indicator of the ground truth.

Speech is thus the harder sub-task in my formulation and therefore receives more benefits

from pre-training.

7.3.2 Ability Type Ablation Study

To better understand the interplay between acts and speech resulting in self and partner act

goal completions, I perform an ablation study selectively dropping either the agent’s ability

to talk or act. I train the agent to either only act, only speak, only speak with only action
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rewards. In the scenarios when the agent can only speak, the agent has to convince the

partner to help achieve the agent’s goal.

The results are outlined in Table 7.4. Unsurprisingly, when trained to only act, the act

goal completion rate increases over when it can both act and speak. Similarly, when trained

to only speak the speech goal completion rates also increase. I can draw two conclusions

from these results: (1) It is much easier to do an action yourself than to convince the partner

to do it (2) Removing speech goals increases the act goal completion rates corresponding to

higher partner act completions. Thus, the sequences of dialogue utterances required to con-

vince the partner to achieve the agent’s goal are likely often at odds with those sequences

required to maximize speech goals.

7.4 Conclusions

Operating on the hypothesis that interactivity is key to language learning, I introduce two

datasets—a set of quests based on character motivations in fantasy worlds, LIGHT-Quests,

and a large-scale commonsense knowledge graph, ATOMIC-LIGHT—and a reinforcement

learning system that leverages transformer-based pre-training to facilitate development of

goal-driven agents that can act and speak in situated environments. Zero-shot evaluations

on a set of novel human demonstration show that I have trained agents that act consistently

and speak naturally with respect to their motivations. A key insight from my ablation

study testing for zero-shot generalization on novel quests is that large-scale pre-training

in interactive settings require careful selection of pre-training tasks—balancing between

giving the agent “general” open domain priors and those more “specific” to the downstream

task—whereas static methodologies require only domain specific pre-training for effective

transfer but are ultimately less effective than interactive methods.
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CHAPTER 8

WORLD GENERATION

A core component of many narrative-based tasks—everything from storytelling to game

generation—is world building. The world of a story or game defines the boundaries of

where the narrative is allowed and what the player is allowed to do. There are four core

challenges to world generation: (1) commonsense knowledge: the world must reference

priors that the player possesses so that players can make sense of the world and build

expectations on how to interact with it. This is especially true in interactive fictions where

the world is presented textually because many details of the world necessarily be left out

(e.g., the pot is on a stove; kitchens are found in houses) that might otherwise be literal

in a graphical virtual world. (2) Thematic knowledge: interactive fictions usually involve

a theme or genre that comes with its own expectations. For example, light speed travel is

plausible in sci-fi worlds but not realistic in the real world. (3) Coherence: the world must

not appear to be an random assortment of locations. (3) Natural language: The descriptions

of the rooms as well as the permissible actions must be text, implying that the system has

natural language generation capability.

Because worlds are conveyed entirely through natural language, the potential output

space for possible generated worlds is combinatorially large. To constrain this space and

to make it possible to evaluate generated world, I present an approach which makes use of

existing stories, building on the worlds presented in them but leaving enough room for the

worlds to be unique. Specifically, I take a story such as Sherlock Holmes or Rapunzel—a

linear reading experience—and extract the description of the world the story is set in to

make an interactive, explorable world.

My method first extracts a partial, potentially disconnected knowledge graph from the

story, encoding information regarding locations, characters, and objects in the form of
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Bank vault
It is about three feet in height, and one and a half in width.
Exits: Baker Street and Wilson’s shop
You see: Archie, Helper and John Clay

Action: Examine John Clay

John Clay
Short, stocky, and one of the taller kind, John Clay is the kind of man who lives and
dies by the watch he keeps.

Action: Go to Baker Street

Baker Street
Like any other street in London, it is a-stage-set, with the best and the worst of
society crammed into one place.

Figure 8.1: Example player interaction in the deep neural generated mystery setting.

〈entity, relation, entity〉 triples. Relations between these types of entities as well as their

properties are captured in this knowledge graph. However, stories often do not explicitly

contain all the information required to fully fill out such a graph. A story may mention that

there is a sword stuck in a stone but not what you can do with the sword or where it is in

relation to everything else. My method fills in missing relation and affordance information

using thematic knowledge gained from training on stories in a similar genre. This knowl-

edge graph is then used to guide the text description generation process for the various

locations, characters, and objects. The game is then assembled using the knowledge graph

and the corresponding generated descriptions.

I have two major contributions. (1) A neural model and a rules-based baseline for each

of the tasks described above. The phases are that of graph extraction and completion fol-

lowed by description generation and game formulation. Each of these phases are relatively

distinct and utilize their own models. (2) A human subject study for comparing the neu-

ral model and variations on it to the rules-based and human-made approaches. I perform

two separate human subject studies—one for the first phase of knowledge graph construc-
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Figure 8.2: Example knowledge graph constructed by AskBERT.

tion and another for the overall game creation process—testing specifically for coherence,

interestingness, and the ability to maintain a theme or genre.

8.1 Bringing Stories Alive

World generation happens in two phases. In the first phase, a partial knowledge graph is

extracted from a story plot and then filled in using thematic commonsense knowledge. In

the second phase, the graph is used as the skeleton to generate a full interactive fiction

game—generating textual descriptions or “flavortext” for rooms and embedded objects.

I present a novel neural approach in addition to a rule guided baseline for each of these

phases in this section.

8.1.1 Knowledge Graph Construction

The first phase is to extract a knowledge graph from the story that depicts locations, char-

acters, objects, and the relations between these entities. I present two techniques. The first

uses neural question-answering technique to extract relations from a story text. The sec-
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ond, provided as a baseline, uses OpenIE5,1 a commonly used rule-based information ex-

traction technique. For the sake of simplicity, I considered primarily the location-location

and location-character/object relations, represented by the “next to” and “has” edges re-

spectively in Figure 8.2.

Neural Graph Construction

While many neural models already exist that perform similar tasks such as named entity

extraction and part of speech tagging, they often come at the cost of large amounts of

specialized labeled data suited for that task. I instead propose a new method that leverages

models trained for context-grounded question-answering tasks to do entity extraction with

no task dependent data or fine-tuning necessary. My method, dubbed AskBERT, leverages

the Question-Answering (QA) model ALBERT (Lan et al. 2019). AskBERT consists of

two steps seen in Figure 8.3: vertex extraction and graph construction.

The first step is to extract the set of entities—graph vertices—from the story. I am

looking to extract information specifically regarding characters, locations, and objects. This

is done by using asking the QA model questions such as “Who is a character in the story?”.

Ribeiro et al. (2019) have shown that the phrasing of questions given to a QA model is

important and this forms the basis of how I formulate my questions—questions are asked

so that they are more likely to return a single answer, e.g. asking “Where is a location in

the story?” as opposed to “Where are the locations in the story?”. In particular, I notice that

pronoun choice can be crucial; “Where is a location in the story?” yielded more consistent

extraction than “What is a location in the story?”. ALBERT QA is trained to also output a

special<no-answer> token when it cannot find an answer to the question within the story.

My method makes use of this by iteratively asking QA model a question and masking out

the most likely answer outputted on the previous step. This process continues until the

<no-answer> token becomes the most likely answer.

1https://github.com/dair-iitd/OpenIE-standalone
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Figure 8.3: Overall AskBERT pipeline for graph construction.

The next step is graph construction. Typical interactive fiction worlds are usually struc-

tured as trees, i.e. no cycles except between locations. Using this fact, I use an approach

that builds a graph from the vertex set by one relation—or edge—at a time. Once again

using the entire story plot as context, I query the ALBERT-QA model picking a random

starting location x from the set of vertices previously extracted.and asking the questions

“What location can I visit from x?” and “Who/What is in x?”. The methodology for phras-

ing these questions follows that described for the vertex extraction. The answer given by

the QA model is matched to the vertex set by picking the vertex u that contains the best

word-token overlap with the answer. Relations between vertices are added by computing a

relation probability on the basis of the output probabilities of the answer given by the QA

model. The probability that vertices x, u are related:

P (x, u) =
p(x, u) + p(u, x)

2
(8.1)

where

p(x, u) =
∑

o∈QA outputs

p(o)1{u = argmax
v

(v ∩ o)} (8.2)

is the sum of the individual token probabilities of the overlapping tokens in the answer from

the QA model and u.

131



Target 
Entity

Story Plot Jabez Wilson, a London
pawnbroker, comes to consult
Sherlock Holmes and Doctor
Watson. 
...

They are John Clay, who has a
long history of criminal activity
already, and his helper Archie.

Q: Who is John Clay?
A:

Short, stocky, and one of the taller
kind, John Clay is the kind of man
who lives and dies by the watch he
keeps.

Target Entity Description

Conditioned GPT-2
Generation

Generation Prompt

Figure 8.4: Overview for neural description generation.

Rule-Based Graph Construction

I compared my proposed AskBERT method with a non-neural, rule-based approach. This

approach is based on the information extracted by OpenIE5, followed by some post-processing

such as named-entity recognition and part-of-speech tagging. OpenIE5 combines several

cutting-edge ideas from several existing papers (Saha and Mausam 2018; Pal and Mausam

2016; Christensen et al. 2011) to create a powerful information extraction tools. For a given

sentence, OpenIE5 generates multiple triples in the format of 〈entity, relation, entity〉 as

concise representations of the sentence, each with a confidence score. These triples are

also occasionally annotated with location information indicating that a triple happened in a

location.

As in the neural AskBERT model, I attempt to extract information regarding locations,

characters, and objects. The entire story plot is passed into the OpenIE5 and I receive a set

of triples. The location annotations on the triples are used to create a set of locations. I mark

which sentences in the story contain these locations. POS tagging based on marking noun-

phrases is then used in conjunction with NER to further filter the set of triples—identifying

the set of characters and objects in the story.

The graph is constructed by linking the set of triples on the basis of the location they

belong to. While some sentences contain very explicit location information for OpenIE5

to mark it out in the triples, most of them do not. I therefore make the assumption that
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the location remains the same for all triples extracted in between sentences where locations

are explicitly mentioned. For example, if there exists locationA in the 1st sentence and

locationB in the 5th sentence of the story, all the events described in sentences 1-4 are

considered to take place in locationA. The entities mentioned in these events are connected

to locationA in the graph.

8.1.2 Description Generation

The second phase involves using the constructed knowledge graph to generate textual de-

scriptions of the entities I have extracted, also known as flavortext. This involves generating

descriptions of what a player “sees” when they enter a location and short blurbs for each

object and character. These descriptions need to not only be faithful to the information

present in the knowledge graph and the overall story plot but to also contain flavor and be

interesting for the player.

Neural Description Generation

Here, I approach the problem of description generation by taking inspiration from condi-

tional transformer-based generation methods (Shirish Keskar et al. 2019). My approach is

outlined in Figure 8.4 and an example description shown in Figure 8.1. For any given en-

tity in the story, I first locate it in the story plot and then construct a prompt which consists

of the entire story up to and including the sentence when the entity is first mentioned in

the story followed by a question asking to describe that entity. With respect to prompts,

I found that more direct methods such as question-answering were more consistent than

open-ended sentence completion. For example, “Q: Who is the prince? A:” often produced

descriptions that were more faithful to the information already present about the prince in

the story than “You see the prince. He is/looks”. For my transformer-based generation, I

use a pre-trained 355M GPT-2 model (Radford et al. 2019) finetuned on a corpus of plot

summaries collected from Wikipedia. The plots used for finetuning are tailored specific to
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the genre of the story in order to provide more relevant generation for the target genre. Ad-

ditional details regarding the datasets used are provided in Section 8.2. This method strikes

a balance between knowledge graph verbalization techniques which often lack “flavor” and

open ended generation which struggles to maintain semantic coherence.

Rules-Based Description Generation

In the rule-based approach, I utilized the templates from the built-in text game generator

of TextWorld (Côté et al. 2018) to generate the description for my graphs. TextWorld is an

open-source library that provides a way to generate text-game learning environments for

training reinforcement learning agents using pre-built grammars.

Two major templates involved here are the Room Intro Templates and Container De-

scription Templates from TextWorld, responsible for generating descriptions of locations

and blurbs for objects/characters respectively. The location and object/character informa-

tion are taken from the knowledge graph constructed previously.

• Example of Room Intro Templates: “This might come as a shock to you, but you’ve

just #entered# a <location-name>”

• Example of Container Description Templates: “The<location-name>#contains#

<object/person-name>”

Each token surrounded by # sign can be expanded using a select set of terminal tokens.

For instance, #entered# could be filled with any of the following phrases here: entered;

walked into; fallen into; moved into; stumbled into; come into. Additional prefixes, suffixes

and adjectives were added to increase the relative variety of descriptions. Unlike the neural

methods, the rule-based approach is not able to generate detailed and flavorful descriptions

of the properties of the locations/objects/characters. By virtue of the templates, However, it

is much better at maintaining consistency with the information contained in the knowledge

graph.
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8.2 World Generation Evaluation

I conducted two sets of human participant evaluations by recruiting participants over Ama-

zon Mechanical Turk. The first evaluation tests the knowledge graph construction phase,

in which I measure perceived coherence and genre or theme resemblance of graphs ex-

tracted by different models. The second study compares full games—including description

generation and game assembly, which can’t easily be isolated from graph construction—

generated by different methods. This study looks at how interesting the games were to

the players in addition to overall coherence and genre resemblance. Both studies are per-

formed across two genres: mystery and fairy-tales. This is done in part to test the relative

effectiveness of my approach across different genres with varying thematic commonsense

knowledge. The dataset used was compiled via story summaries that were scraped from

Wikipedia via a recursive crawling bot. The bot searched pages for both for plot sections as

well as links to other potential stories. From the process, 695 fairy-tales and 536 mystery

stories were compiled from two categories: novels and short stories. I note that the mys-

teries did not often contain many fantasy elements, i.e. they consisted of mysteries set in

my world such as Sherlock Holmes, while the fairy-tales were much more removed from

reality. Details regarding how each of the studies were conducted and the corresponding

setup are presented below.

8.2.1 Knowledge Graph Construction Evaluation

I first select a subset of 10 stories randomly from each genre and then extract a knowledge

graph using three different models. Each participant is presented with the three graphs

extracted from a single story in each genre and then asked to rank them on the basis of how

coherent they were and how well the graphs match the genre. The graphs resembles the one

shown in in Figure 8.2 and are presented to the participant sequentially. The exact order

of the graphs and genres was also randomized to mitigate any potential latent correlations.
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Table 8.1: Vertex statistics: Average vertex count by type per genre. The random model
has the same vertex statistics as the neural model.

Genre Category Neural Rules

Mystery
Locations 7.2 3.5
Characters 4.8 4.1
Objects 3.2 12.2

Fairy-tale
Locations 4.0 1.8
Characters 3.3 1.2
Objects 4.1 8.7

Table 8.2: Edge and degree statistics: Average edge count , average degree count, and
degree standard deviation of the graphs.

Genre Statistic Neural Rules Random

Mystery
Avg. Edges 10.7 22.3 10.7
Avg. Degree 1.63 ± 1.77 2.15 ± 0.38 1.63 ± 1.63

Fairy-tale
Avg. Edges 16.7 12 16.7
Avg. Degree 1.73 ± 2.04 1.98 ± 0.29 1.73 ± 1.64

Overall, this study had a total of 130 participants.This ensures that, on average, graphs from

every story were seen by 13 participants.

In addition to the neural AskBERT and rules-based methods, I also test a variation of the

neural model which I dub to be the “random” approach. The method of vertex extraction

remains identical to the neural method, but I instead connect the vertices randomly instead

of selecting the most confident according to the QA model. I initialize the graph with a

starting location entity. Then, I randomly sample from the vertex set and connect it to

a randomly sampled location in the graph until every vertex has been connected. This

ablation in particular is designed to test the ability of my neural model to predict relations

between entities. It lets us observe how accurately linking related vertices effects each of

the metrics that I test for. For a fair comparison between the graphs produced by different

approaches, I randomly removed some of the nodes and edges from the initial graphs so that

the maximum number of locations per graph and the maximum number of objects/people

per location in each story genre are the same.

The results are shown in Table 8.3. I show the median rank of each of the models for
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both questions across the genres. Ranked data is generally closely interrelated and so I

perform Friedman’s test between the three models to validate that the results are statisti-

cally significant. This is presented as the p-value in table (asterisks indicate significance at

p < 0.05). In cases where I make comparisons between specific pairs of models, when nec-

essary, I additionally perform the Mann-Whitney U test to ensure that the rankings differed

significantly.

In the mystery genre, the rules-based method was often ranked first in terms of genre

resemblance, followed by the neural and random models. This particular result was not

statistically significant However, likely indicating that all the models performed approxi-

mately equally in this category. The neural approach was deemed to be the most coherent

followed by the rules and random. For the fairy-tales, the neural model ranked higher on

both of the questions asked of the participants. In this genre, the random neural model also

performed better than the rules based approach.

Tables 8.1 and 8.2 show the statistics of the constructed knowledge graphs in terms

of vertices and edges. I see that the rules-based graph construction has a loIr number of

locations, characters, and relations between entities but far more objects in general. The

greater number of objects is likely due to the rules-based approach being unable to correctly

identify locations and characters. The gap between the methods is less pronounced in

the mystery genre as opposed to the fairy-tales, in fact the rules-based graphs have more

relations than the neural ones. The random and neural models have the same number of

entities in all categories by construction but random in general has loIr variance on the

number of relations found. In this case as well, the variance is loIr for mystery as opposed

to fairy-tales. When taken in the context of the results in Table 8.3, it appears to indicate

that leveraging thematic commonsense in the form of AskBERT for graph construction

directly results in graphs that are more coherent and maintain genre more easily. This is

especially true in the case of the fairy-tales where the thematic and everyday commonsense

diverge more than than in the case of the mysteries.
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Table 8.3: Results of the knowledge graph evaluation study.

Genre Questions Neural Rules Random p-value

Mystery
Resembles Genre 2 1 3 0.35
Coherence 1 2 3 0.049∗

Fairy-tale
Resembles Genre 1 3 2 0.014∗

Coherence 1 3 2 0.013∗

Table 8.4: Results of the full game evaluation participant study. *Indicates statistical sig-
nificance (p < 0.05).

Genre Questions Random Rules Human

Mystery
Interesting 45 72* 69*
Coherence 36* 45* 69*
Resembles Genre 45 38* 75*

Fairy-tale
Interesting 42 37* 64*
Coherence 25* 25* 45
Resembles Genre 25* 37* 69*

8.2.2 Full Game Evaluation

This participant study was designed to test the overall game formulation process encom-

passing both phases described in Section 8.1. A single story from each genre was chosen by

hand from the 10 stories used for the graph evaluation process. From the knowledge graphs

for this story, I generate descriptions using the neural, rules, and random approaches de-

scribed previously. Additionally, I introduce a human-authored game for each story here

to provide an additional benchmark. This author selected was familiar with text-adventure

games in general as well as the genres of detective mystery and fairy tale. To ensure a

fair comparison, I ensure that the maximum number of locations and maximum number

of characters/objects per location matched the other methods. After setting general format

expectations, the author read the selected stories and constructed knowledge graphs in a

corresponding three step process of: identifying the n most important entities in the story,

mapping positional relationships between entities, and then synthesizing flavor text for the

entities based off of said location, the overall story plot, and background topic knowledge.

Once the knowledge graph and associated descriptions are generated for a particular
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story, they are then automatically turned into a fully playable text-game using the text

game engine Evennia2. Evennia was chosen for its flexibility and customization, as well as

a convenient Ib client for end user testing. The data structures were translated into builder

commands within Evennia that constructed the various layouts, flavor text, and rules of

the game world. Users were placed in one “room” out of the different world locations

within the game they were playing, and asked to explore the game world that was available

to them. Users achieved this by moving between rooms and investigating objects. Each

time a new room was entered or object investigated, the player’s total number of explored

entities would be displayed as their score.

Each participant was was asked to play the neural game and then another one from one

of the three additional models within a genre. The completion criteria for each game is

collect half the total score possible in the game, i.e. explore half of all possible rooms and

examine half of all possible entities. This provided the participant with multiple possible

methods of finishing a particular game. On completion, the participant was asked to rank

the two games according to overall perceived coherence, interestingness, and adherence to

the genre. I additionally provided a required initial tutorial game which demonstrated all of

these mechanics. The order in which participants played the games was also randomized

as in the graph evaluation to remove potential correlations. I had 75 participants in total,

39 for mystery and 36 for fairy-tales. As each player played the neural model created

game and one from each of the other approaches—this gave us 13 on average for the other

approaches in the mystery genre and 12 for fairy-tales.

The summary of the results of the full game study is shown in Table 8.4. As the com-

parisons made in this study are all made pairwise between my neural model and one of

the baselines—they are presented in terms of what percentage of participants prefer the

baseline game over the neural game. Once again, as this is highly interrelated ranked data,

I perform the Mann-Whitney U test between each of the pairs to ensure that the rankings

2http://www.evennia.com/
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differed significantly. This is also indicated on the table.

In the mystery genre, the neural approach is generally preferred by a greater percentage

of participants than the rules or random. The human-made game outperforms them all. A

significant exception to is that participants thought that the rules-based game was more in-

teresting than the neural game. The trends in the fairy-tale genre are in general similar with

a few notable deviations. The first deviation is that the rules-based and random approaches

perform significantly worse than neural in this genre. I see also that the neural game is as

coherent as the human-made game.

As in the previous study, I hypothesize that this is likely due to the rules-based ap-

proach being more suited to the mystery genre, which is often more mundane and contains

less fantastical elements. By extension, I can say that thematic commonsense in fairy-tales

has less overlap with everyday commonsense than for mundane mysteries. This has a few

implications, one of which is that this theme specific information is unlikely to have been

seen by OpenIE5 before. This is indicated in the relatively improved performance of the

rules-based model in this genre across in terms of both interestingness and coherence.The

genre difference can also be observed in terms of the performance of the random model.

This model also lacking when compared to my neural model across all the questions asked

especially in the fairy-tale setting. This appears to imply that filling in gaps in the knowl-

edge graph using thematically relevant information such as with AskBERT results in more

interesting and coherent descriptions and games especially in settings where the thematic

commonsense diverges from everyday commonsense.

Procedural world generation systems are required to be semantically consistent, comply

with thematic and everyday commonsense understanding, and maintain overall interesting-

ness. I describe an approach that transform a linear reading experience in the form of a

story plot into a interactive narrative experience. My method, AskBERT, extracts and fills

in a knowledge graph using thematic commonsense and then uses it as a skeleton to flesh

out the rest of the world. A key insight from my human participant study reveals that the
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ability to construct a thematically consistent knowledge graph is critical to overall percep-

tions of coherence and interestingness particularly when the theme diverges from everyday

commonsense understanding.
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CHAPTER 9

QUEST GENERATION

In this chapter, I consider the challenge of automatically generating narratives that have

recognizable causal entailment between events, also known as quests. Specifically, I ap-

proach the problem of quest generation as story generation via plot-infilling (Ippolito et al.

2019; Donahue et al. 2020) where an outline of plot points is extracted from a source then

elaborated upon. I introduce the concept of soft causal relations, where causal entailment

between story events does not need to be strictly logically consistent, but draws upon peo-

ple’s everyday commonsense understanding of whether one event tends to be preceded or

succeeded by another.

I demonstrate an approach to story generation using soft causal relations in the C2PO

(Commonsense, Causal Plot Ordering) system, which generates narratives via plot infilling

using soft causal relations. Inspired by work on plot graph learning (Li et al. 2012), C2PO

attempts to create a branching space of possible story continuations that bridge between

plot points that are automatically extracted from existing natural language plot summaries.

To create this branching story space, I iteratively extract commonsense causal inferences

from the COMET (Bosselut et al. 2019) model of commonsense reasoning. Finally, once

the space—a plot graph—has been constructed, I search the space for complete sequences.

Using human participation studies, I evaluate C2PO against baseline text infilling sys-

tems with different uses of commonsense reasoning and inductive biases to determine the

role of soft causal relations on perceptions of story quality. I choose two story corpora in

different genres: real-world mystery stories such as Sherlock Holmes—known for gener-

ally being consistent with everyday commonsense norms, and children’s fairy tales such

as Hansel and Gretel—stories which usually shatter commonsense expectations. Through

these studies I further explore the broader issue of how the change in commonsense norms
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Story Plot

husband, he, him, him, he...Neural Coreference

OpenIE

A lonely couple, who long for a
child...
Her husband fears for her life
and...
As he scales the wall to return
home...
He begs for mercy and she
agrees to be lenient...

Husband fears for her life
He scales the wall
He begs for mercy
...

(A lonely couple, lives next to, garden)
(Her husband, fears for, her life)
(he, scales, the wall)
(He, begs for, mercy)
...

Mentions

Relation Tuples

Extracted Plot Line

Alignment using story text

Figure 9.1: An illustration of high level plot point extraction.

across storytelling genres affects perceptions of story quality.

9.1 Soft Causal Relations

A hard causal relation implies that some world state transitions that are illegal—e.g., a

character John cannot shoot Xavier if John is not in possession of a gun and the two char-

acters are physically co-located. In contrast, a soft causal relation is mediated by the as-

sumed reader’s beliefs. Soft causality is therefore causality–normally a logical construct

in narrative–mediated by the beliefs of the reader. It provides a causal ordering of events

from the perspective of the reader instead of from the perspective of the author (whether

human or agent). That is, a soft causal relation is a reasonable expectation of two non-

mutually exclusive criteria: (a) certain activities are needed to achieve a character’s goal,

and (b) certain activities are in pursuit of future goals. The first clause draws on the psy-

chological theory of the role of causality in story understanding by Trabasso and Broek

(1985): readers attempt to understand “why” events occur by tracking causal relations as

enablement—some event y cannot occur unless some preceding event x occurred. The

second clause draws upon a theory of the role of character goal hierarchies in story un-

derstanding by Graesser et al. (1991): readers attempt to understand “why” things happen

by tracking and predicting character goal hierarchies. In both cases, whether an inference

is made by reader is strongly dependent on what the reader’s beliefs about the world are.

In short, the key difference between hard and soft causality is the idea of expectations of
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causality via commonsense reasoning.

Commonsense knowledge is the set of commonly shared knowledge about how the

world works. It enables us to form expectations about what will happen if I take certain

courses of action and to infer things that likely happened in the past. Commonsense rea-

soning is the application of commonsense knowledge to specific contexts. Relevant to my

work, commonsense reasoning might be applied to make inferences about what might have

needed to have taken place for a character to arrive at a certain state—soft enablement—

and what a reasonable next action would be based on what has happened so far—soft goal

hierarchies.

Specifically for this paper, I use COMET (Bosselut et al. 2019) to model an assumed

reader’s commonsense knowledge. COMET is a transformer-based language model de-

signed for commonsense inference and is trained on ATOMIC (Sap et al. 2019). ATOMIC

is a dataset containing 877k instances of information relevant for everyday commonsense

reasoning in the form of typed if-then relations with variables. ATOMIC is organized into

different relation types such as “needs”, “wants”, “attributes”, and “effects”. I specifically

use the relations for “wants” and ”needs”. An example of a cause using the wants relation

is as follows, “if X tried to get away, then X wants to be free.” Likewise, an example of an

effect using the needs relation is, “if X scaled the wall, then X needs to know how to scale

the wall.”

The key difference between hard and soft causality is the idea of expectations of causal-

ity via commonsense reasoning and can be illustrated using the relations seen here. A hard

causal relation requires verification and satisfaction of propositions, as in the example given

in the paper - John cannot shoot Xavier if John is not in possession of a gun or they are not

co-located. A soft causal relation here would be that the reader’s belief that John dislikes

Xavier and wants to fight him and thus as a result, he wants a weapon. Guns are weapons

and thus there is a probability that John needs a weapon to fight Xavier.

In the next section I detail how I use the theory of soft causal relations, and COMET
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commonsense inferences about needs and wants, to generate stories. In section 5, I present

the results of a human participant study that uses an evaluation of several systems in two

distinct genres to probe how soft causal relations affect participant perceptions of story

quality and coherence.

9.2 C2PO

This section presents the overall layout of C2PO. C2PO works by first extracting a set of

high level plot points from a given textual story plot S and then generating a branching set

of events that go between each high level plot point. The final story is obtained by walking

the overall plot graph generated by joining each generated sub-graph.

9.2.1 Plot Extraction

The overall plot extraction process is described in Figure 9.1. In order to facilitate plot

extraction, I propose a method that uses coreference resolution and information extraction

to identify a set of plot points following a single character. First, I extract all the corefer-

ence clusters using a pre-trained neural coreference resolution model (Clark and Manning

2016). There can be multiple such clusters, each of which contains all mentions in the

story belonging to a single possible character. I pick one of these clusters at random.

Let M = {m1,m2, ...,mn} denote this cluster. Simultaneously, I also extract a set R of

〈subject, relation, object〉 triples from the story text using OpenIE (Angeli et al. 2015).

Once I have both of the set of mentions for a character and the triples for the story, I

align them, attempting to find the subset of triples P ⊂ R that are relevant for a single

character on the basis of their character-level positions within the original story text. Both

the neural coreference model and OpenIE are information retrieval systems and so I can

identify the character-level offset or position of the retrieved information in the original

story text. Let pos(·) be a function that can do this. The set of plot points is P = {〈s, r, o〉 :

pos(m) = pos(s),∀m ∈ M, 〈s, r, o〉 ∈ G}. The result is a sequence of relational tuples in
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Husband fears for her life He scales wall

to escape

to avoid danger

to not be hurt

to be free

to get away

to be safe

to walk to the wall

to go to the wall

to get up

to know how to
climb

to know how to
scale the wall

to get a scale

1 2

3

Figure 9.2: A demonstration of the plot graph generation process. 1 and 2 respectively
indicate adjacent, extracted plot points. Dotted lines represent the process of finding the
optimal link between the backward plot graph and node 3.

which the character is the primary subject of the triple, ordered by when they first appeared

in the original story text. Joining each triple together yields a subject-relation-object phrase

which I refer to as a plot point.

9.2.2 Plot Graph Generation

Once I have established a series of plot points P = {p1, p2, ..., pn}, I move on to plot graph

generation as illustrated in Figure 9.2. A plot graph is generated for each pair of adjacent

plot points (pi, pi+1), i ∈ {1, .., n− 1} and then linked together in the order the plot points

first appear in P to form a plot graph for an entire story.

The process to generate a plot graph between adjacent plot points p1, p2 is as follows.

Starting from p1, I use COMET (Bosselut et al. 2019) to generate candidate next events in

the story. The wants relation indicates a direct forward cause—a character has a want and

therefore performs an action. I recursively query COMET to generate k event candidates n

times going forward starting with p1; let this be Gf . The needs relation indicates backward

enablement—a character needed something to be true to do an action. I recursively query

COMET to generate k event candidate n times going backward from p2; let this be Gb. This

gives us two directed acyclic graphs as seen in Figure 9.2. The relations in Gf and Gb are

weighted proportional to the likelihood score produced by COMET for each inference.
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Table 9.1: Dataset statistics.

Mystery Fairy Tale
No. Stories 569 695
Sentences per story 23.36 24.80
Vocabulary size 21,238 16,452

Table 9.2: Inductive biases of each system.

Commonsense Storytelling
C2PO X X
BERT+infill X
Hier. Fusion X

The next step is to look for the optimal way to link Gf and Gb and computing the

probability of reaching a node u ∈ Gf looking at all nodes ∀v ∈ Gb. Let Prneeds(u|v) be

the probability of generating event e2 as determined by COMET under the needs relation,

conditioned on e1, and Prwants(v|u) be the same but under the wants relation. I define this

link’s weight as:

w(u, v) =
Prwants(u|v)

αwantsu

+
Prneeds(v|u)

αneedsv

(9.1)

where αwantsu and αneedsv are normalization constants. Here I set them equal to the probabil-

ity of generating the word “to”, a word in ATOMIC common to both relation types. This

process is repeated for all nodes until I have found a set of optimal links. 1

Finally, I link together the plot graphs for the entire sequence of plot points: G =⋃
p1,p2

(Gfp1 ∪ Gbp2),∀p1, p2 ∈ P where p1, p2 are adjacent in P . A story can be generated

via a random walk of the graph from the first plot point p1 to the last pn. All random walks

are guaranteed to terminate in pn because Gbpn is constructed by branching backward from

pn. Likewise, each intermediate plot point p2...pn−1 is a node in G that all walks must pass

through.
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Table 9.3: Examples of a story generated by each model in both genres given the same
initial set of bolded high level plot points.

C2PO BERT+infill Hierarchical Fusion
Mystery Holmes decides go. Holmes

wants to go. Holmes begins
to see something. Holmes
begins to look around.
Holmes notices a pair of
trouser knees. Holmes
wants to clean up. Holmes
begins take a shower.
Holmes wants to get ready.
Holmes wants to walk to the
store. Holmes taps in front
of Wilson’s shop. Holmes
tries say hello. Holmes wants
start the car. Holmes tries to
drive to the scene. He calls
Police Inspector Jones.

Holmes decides go. Holmes
new friend initially stays.
Holmes new son accepts
goes. Holmes mother also
stays. Holmes notices a pair
of trouser knees. Holmes
himself still watches.
Holmes again is house ghost
watches. Holmes insists he
took watch. Holmes taps
in front of Wilson’s shop.
Holmes smiles and even-
tually leaves. Holmes red
cap now appears. Holmes
silhouette finally stands.
He calls Police Inspector
Jones.

Holmes decides go. The room was
silent. The room was silent. The air
was heavy , and the room was quiet.
Holmes notices a pair of trouser
knees. The young man wasn’t going
to be a father. His parents weren’t
supposed to be a father. They had
the best kids in the entire world.
Holmes taps in front of Wilson’s
shop. I’m not sure what’s happen-
ing to me , but I’m not sure. What?
You’ve been in a heel for a few
years, and you’ve been in a heel for
nearly a month. He calls Police In-
spector Jones.

Fairy
Tale

Queen asks her mirror.
Queen wants to look bet-
ter. Queen wants to try
on clothes. Queen starts to
be mad. Queen is furious.
Queen tries to relax. Queen
wants to take a nap. Queen
starts to get up. Queen be-
gins to approach someone.
She appears at a dwarfs’.
Queen starts to surprise ev-
eryone. Queen starts to have
a party. queen wants to have
money. Queen tries to buy
poison comb. She brushes
with poisoned comb. Queen
tries to wash her hair. Queen
starts dry it. Queen wants to
be hungry. Queen wants to
get the knife. Queen cuts the
apple in half.

Queen asks her mirror.
Queen is still half smiles.
Queen who had had frowns.
Queen has always asked.
Queen is furious. Queen
wife of mary then flees.
Queen wife husband anna
maria refuses. Queen mis-
tress queen mistress wives
demands. She appears at a
dwarfs’. Queen queen rose
meets princess. Queen sees
fairies she crowns fairies.
Queen rises with beauty.
She brushes with poisoned
comb. Queen was now also
finally returns. Queen then
had only disappears. Queen
thought she vanished. Queen
cuts the apple in half.

Queen asks her mirror. “What the
...” “You know I have no idea how
I got here. You know I can’t do
anything about it.” “I know I can’t
do anything about it.” Queen is
furious. A large, creature sits in
the middle of a room with an odd
looking cat on it. The creature is a
strange looking cat, though it looks
like the same cat is in its own room.
Its fur is like a large, white slept.
She appears at a dwarfs’. “So, you
’re here to kill me,” asked the man in
the suit, with a slight hint of worry
in his due. “Yes,” replied the man
in the suit. She brushes with poi-
soned comb. We hadn’t met in a
long time. We weren’t supposed to
be alone , and the rest of our group
was just a group of people. Queen
cuts the apple in half.
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9.3 Experiments

I evaluate on a story dataset with two genres—mystery stories and fairy tales—first in-

troduced in Chapter 8,2 statistics for the dataset can be found in Table 9.1. The data is

partitioned into train and test splits in a 8:2 ratio, and the train split used to train C2PO and

two baseline models (described below). A random set of 10 stories is chosen from each

genre in the test set and high level plot points are extracted as described in Section 9.2. For

each model and for each set of high-level plot points and for each genre I generate three

distinct stories for a total of (3× 10× 2× 3 = 180 stories. I generate three stories for each

combination of model, plot point set, and genre to account for variance in stories that can

be produced by the same high level plot due to the branching nature of C2PO as well as

variance in the baselines’ outputs. Standard automated language generation metrics such

as perplexity and BLEU (Papineni et al. 2002) are known to be unreliable for creative gen-

eration tasks (Ammanabrolu et al. 2020c). The stories are thus evaluated using a human

participant study, described below.

9.3.1 Baselines

I choose two baselines on the basis of the comparisons they afford (summarized in Ta-

ble 9.2). Both are designed to perform text infilling tasks but differ based in their inductive

biases. “Inductive biases” here specifically refer to a system’s ability to model common-

sense knowledge and if they were originally designed for storytelling or not.

BERT+infill. The first baseline is a BERT (Devlin et al. 2019) based model that has not

strictly been designed for storytelling (though BERT is trained on a corpus that includes

story texts) and then adapted to perform text infilling. Although large-scale pre-trained

language models are known not to be great storytellers, mostly due to them being unable

1COMET and ATOMIC can be replaced by any model designed for automated knowledge base comple-
tion and corresponding commonsense reasoning knowledge base by selecting the appropriate relations in the
replacements.

2https://github.com/rajammanabrolu/WorldGeneration
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Table 9.4: Participant count statistics.

C2PO vs. BERT+ C2PO vs. Hier. Tot.
Mystery 82 89 171
Fairy Tale 90 90 180
Total 172 179 351

to stay on track for any extended period of time (See et al. 2019), they have demonstrated

knowledge of factual commonsense information by virtue of the amount of data they have

been trained on (Petroni et al. 2019). Our problem setting requires us to generate a section

of text between two consecutive high level plot points at a time, reminiscent of approaches

taken by Ippolito et al. (2019) and Donahue et al. (2020) that condition a language model on

left and right contexts to fill in blanks in a story. I follow a similar setup for this baseline, us-

ing BERT (Devlin et al. 2019) conditioned to attend to both previous tokens—the preceding

plot point—and future tokens—the following plot point—to generate sequences (Lawrence

et al. 2019). BERT+infill is fine-tuned using this methodology on the high-level plot points

extracted from my training data. Despite being similar to these prior methods, I note that

BERT+infill utilizes no storytelling domain knowledge in its architecture and boils down

to simple masked language modeling with multiple mask tokens.

Hierarchical Fusion. Fan et al. (2018) train their system—consisting of a convolu-

tional sequence-to-sequence network with self-attention (Ott et al. 2019)—on the Red-

dit Writing Prompt corpus, where human-contributed prompts are paired with human-

contributed stories. The system learns to first generate a prompt and then transform it

into a story. This model’s architecture is explicitly designed to tell stories and is suited for

a type of storytelling wherein a prompt for a story is generated into a passage This type of

training is particularly well suited to my setup of generating a story piece-by-piece using

extracted high level plot points. I train the model from my training set using high level

plots extracted from the stories as described in Section 9.2 as the prompts and sections in

between each of these extracted plot points as the story.
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(a) C2PO vs BERT+infill in the mystery genre.
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(b) C2PO vs BERT+infill in the fairy genre.

Figure 9.3: Human evaluation results comparing C2PO vs BERT+infill. ∗ indicates p <
0.05, ‡ indicates κ > 0.4 or moderate agreement, † indicates κ > 0.2 or fair agreement

9.3.2 Human Evaluation Setup

I have 10 sets of high level plots per genre and three generated stories per each plot for

each of the models. I recruited 351 human participants via Mechanical Turk. Criteria for

enrollment included: (a) fluency in English, and (b) demonstrating an understanding of

commonsense based causality in stories. To screen participants for the latter I asked them

to predict potential next events that could reasonably occur given a story scenario.

Human participants are given one story generated by C2PO and another evenly ran-

domly picked from those generated by either BERT+infill or Hierarchical Fusion for the

same plot. The order that these stories are presented in is randomized to account for bias

induced due to the ordering effect (Olson and Kellogg 2014). Each story pairing is seen by

at least three participants. Participant count statistics are given in Table 9.4.

Participants are then asked a series of questions, each measuring a particular aspect of

perceived story quality, comparing the C2PO generated model to one of the baselines. For

each question they are asked to note down which story they preferred. The questions I use

are adapted from Purdy et al. (2018) and have been used in multiple storytelling works

as an indication of story quality (Ammanabrolu et al. 2020c; Tambwekar et al. 2019).

Specifically, I ask:
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Table 9.5: Statistics for generated stories. Unique n-grams are measured with respect to
those found in the test set of the initial story data.

C2PO BERT+infill Hierarchical
Myst, Fairy Myst, Fairy Myst, Fairy

Avg. Sent/Story 29.23 30.2 25.4 26.0 31.3 41.0
Avg. Words/Sent 4.94 5.04 4.62 4.79 7.21 5.75
Unique Bigrams 312 317 356 357 380 402
Unique Trigrams 1245 1353 1856 1870 2187 2190

1. Which story’s events occur in a more PLAUSIBLE ORDER?: as a proxy to indicate

perceptions of overall causality within the story.

2. Which story’s sentences MAKE MORE SENSE given sentences before and after

them?: to examine perceptions of local causality and commonsense reasoning in the

story.

3. Which story better follows a SINGLE PLOT?: for insight into perceptions of global

coherence for the entire story.

4. Which story is of HIGHER QUALITY?: as a measure of overall perceived story

quality.

5. Which story is more ENJOYABLE?: indicates story value.

6. Which story better FITS A GENRE?: as a measure of how well the story matches

commonsense knowledge specific to a genre, capturing the differences between the

two genres.

For each of these questions, within a pairwise comparison, I perform a paired Mann-

Whitney U test to assess statistical significance and additionally calculate Fleiss’ κ (Kappa)

value to measure inter-rater reliability.

9.4 Results and Analysis

There are a few dimensions along which I will attempt to analyze these results: (1) the

inherent inductive biases of each model as seen in Table 9.2, (2) the two genres, and (3) the
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Table 9.6: Randomly selected examples of stories generated by the fairy models. Bolded
sentences are the original extracted plot points.

C2PO BERT+infill Hierarchical Fusion
They live out at time seven years.
Bearskin village is just came.
Bearskin and family wants country.
Bearskin only takes river gives
valley. Bearskin gave purse of
gold. Bearskin brothers also agreed.
Bearskin with senior chief heads
agreed. Bearskin daughter among el-
der sisters agrees. Bearskin promised
return in three years. Bearskin they
had had promised. Bearskin daughter
was sisters agreed. Bearskin daugh-
ter sister married my family. Her
sisters ridiculed her. Bearskin also
always once reappeared. Bearskin
who always is later left. Bearskin
also becomes a. Bearskin found
devil again At end of seven years.
Bearskin says and so says. Bearskin
he can sing now sings. Bearskin it
has told him cries. He fulfill his
promise. Bearskin polish grease
nail nails. Bearskin polish cut boot.
Bearskin helps clean burn wood cuts.
Bearskin clip his nails. Bearskin
boots and mr. Bearskin boots nails
and boot. Bearskin leather leather toe
boot. He is good. Bearskin brother
had still also stood. Bearskin looked
and then said. Bearskin claimed it
did. Bearskin dropped his half of
ring.

They live out at time seven
years. Bearskin village is just
came. Bearskin and family wants
country. Bearskin only takes river
gives valley. Bearskin gave purse
of gold. Bearskin brothers also
agreed. Bearskin with senior chief
heads agreed. Bearskin daughter
among elder sisters agrees. Bearskin
promised return in three years.
Bearskin they had had promised.
Bearskin daughter was sisters
agreed. Bearskin daughter sister
married my family. Her sisters
ridiculed her. Bearskin also always
once reappeared. Bearskin who
always is later left. Bearskin also
becomes a. Bearskin found devil
again At end of seven years.
Bearskin says and so says. Bearskin
he can sing now sings. Bearskin it
has told him cries. He fulfill his
promise. Bearskin polish grease
nail nails. Bearskin polish cut
boot. Bearskin helps clean burn
wood cuts. Bearskin clip his nails.
Bearskin boots and mr. Bearskin
boots nails and boot. Bearskin
leather leather toe boot. He is good.
Bearskin brother had still also stood.
Bearskin looked and then said.
Bearskin claimed it did. Bearskin
dropped his half of ring.

They live out at time seven years. He was stand-
ing here in a large room. The door was wide
open , and he looked down. He was n’t sure
what he was seeing , but he was n’t sure what
to think.Bearskin gave purse of gold. “ Hey ,
buddy , ” the man said , “ You ’ve got to be kid-
ding me. ” The man laughed , “ Yeah , man. ”
“ I ’ve been watching this guy for a long time ,
buddy.Bearskin promised return in three years. “
What do you mean I ’m here for you. ” “ Well ,
” said the young boy , “ I ’ll have you know this
is n’t a bad idea. ” “ But , ” said the young girl ,
“ I was n’t in any trouble.Her sisters ridiculed
her. “ What the hell. ” He was a man in a
suit of black suit with a black tie. His face was
red with sweat and a scar that was almost like
lightning.Bearskin found devil again At end of
seven years. “ Hey , man , what the Dom are you
doing. ” I said as I looked around. “ I ’m not sure
, man , ” he said with an expression of ease , “
you ’re not really my man.He fulfill his promise.
The man was n’t exactly the most spinning man
in the world. He was n’t the most spinning man
in the world. He was n’t the most spinning man
in the world , but he was n’t the most famous man
in the world.Bearskin clip his nails. I was n’t the
best on this wonders. I did n’t need any. There
is n’t much time.He is good. “ So , what are you
doing here. ”“ Oh , it ’s been a while since you
’ve been in this business. ”“ I do n’t really know
much about this.Bearskin dropped his half of
ring.

Prince calls at time night. Prince
and tries again calls. Prince that
still wakes. Prince then knocks
and asleep. He finds To his hor-
ror. Prince robert francis charles
george leaps. Prince charles henry
louis rupert. Prince joseph john
frederick maurice victor. He leaps
from tower. Prince anthony or saint
john leaves. Prince anthony nicholas
edward lawrence. Prince edward
nicholas james peter george. He
wanders For years. Prince james
edward thinks. Prince james john
james. Prince alexander rupert james
augustus george. He hears again her
voice.

Prince calls at time night. Prince
and tries again calls. Prince that
still wakes. Prince then knocks
and asleep. He finds To his hor-
ror. Prince robert francis charles
george leaps. Prince charles henry
louis rupert. Prince joseph john
frederick maurice victor. He leaps
from tower. Prince anthony or
saint john leaves. Prince anthony
nicholas edward lawrence. Prince
edward nicholas james peter george.
He wanders For years. Prince
james edward thinks. Prince james
john james. Prince alexander rupert
james augustus george. He hears
again her voice.

Prince calls at time night. He was sitting alone
in the dark , surrounded by the many stars. He
was alone , and this was it. He had been waiting
for this moment , a long time ago.He finds To
his horror. “ I ’m not really sure where I got that
from , but I just want to know where I got it ” “
Oh , well it ’s not a problem , you have to take it
, just like I did ” “ But no it ’s not , it ’s not like
you could just give it to me. I ’m not going to
take it , but I do n’t want to be like it. It ’s not like
you have any idea why ” “ You ’re right , it ’s not
like you have the time.He leaps from tower. “
So ... ” “ What. ” “ I ’m not going to ask you any
more questions about this. ” “ You ’re going to
be fine.He wanders For years. The sound of his
phone being hung off the ground made him look
up and see the phone. He had n’t seen her since
she was eight. She was the most beautiful thing
he ’d ever seen.He hears again her voice.

Girl has clothes. Girl lives in dress.
Girl know she can dress. Girl know
still know she sees. Her wear rags.
Girl not smile and talk. Girl never
gets bad hair. Girl and most rarely
smiles. She do kinds of hard work.

Girl has clothes. Girl lives in dress.
Girl know she can dress. Girl know
still know she sees. Her wear rags.
Girl not smile and talk. Girl never
gets bad hair. Girl and most rarely
smiles. She do kinds of hard work.

Girl has clothes. The first few days were strike
as hell. The first few days I woke up on a cold
, damp night. My eyes were Small and my face
looked as if I had been taller , bleeding , bleeding
, I was just a little bit sprinting and confused by
the pain.Her wear rags. The room was dark. Not
a single light was on. All the lights in the room
were on.She do kinds of hard work.
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Table 9.7: Randomly selected examples of stories generated by the mystery models.
Bolded sentences are the original extracted plot points.

C2PO BERT+infill Hierarchical Fusion
Holmes decides go. Holmes wants
to go. Holmes begins to see some-
thing. Holmes begins to look around.
Holmes notices has trouser knees.
Holmes wants to clean up. Holmes be-
gins take a shower. Holmes wants to
get ready. Holmes wants to walk to the
store. Holmes taps in front of Wil-
son ’s shop. Holmes tries to say hello.
Holmes tries say hello. Holmes wants
start the car. Holmes tries to drive to
the scene. He calls Police Inspector
Jones.

Holmes decides go. Holmes new
friend initially stays. Holmes new
son accepts goes. Holmes mother
also stays. Holmes notices has
trouser knees. Holmes himself still
watches. Holmes again is house
ghost watches. Holmes insists he
took watch. Holmes taps in front
of Wilson ’s shop. Holmes smiles
and eventually leaves. Holmes red
cap now appears. Holmes silhouette
finally stands. He calls Police In-
spector Jones.

Holmes decides go. The room was silent.
The room was silent. The air was heavy ,
and the room was quiet.Holmes notices has
trouser knees. The young man was n’t going
to be a father. His parents were n’t supposed
to be a father. They had the best kids in the
entire world.Holmes taps in front of Wilson
’s shop. “ I ’m not sure what ’s happening to
me , but I ’m not sure. ” “ What. ” “ You
’ve been in a heel for a few years , and you
’ve been in a heel for nearly a month.He calls
Police Inspector Jones.

Alec has room. Alec tries to sleep.
Alec wants take a shower. Alec be-
gins to get dressed. Alec begins go to
room. Alec to room. Alec tries to eat.
Alec starts drink water. Alec wants to
have money. Alec wants to have a car.
Alec throttle Holmes. Alec starts to
be successful. Alec tries to buy a car.
Alec tries to go to the car. Alec wants
to be in a car. His father apparently
twisting Holmes ’s wrist. Alec be-
gins to hurt someone. Alec tries to do
something bad. Alec out of hand.

Alec has room. Alec back to says
back says. Alec thinks back to goes.
Alec well that sure did too. Alec
to room. Alec sees and also sees
baldwin. Alec himself sees baldwin
waits. Alec herself eventually en-
ters. Alec throttle Holmes. Alec
fletcher holmes thomas john thomas.
Alec watson james smith. Alec
james stewart john hacking. His fa-
ther apparently twisting Holmes ’s
wrist. Alec getting out suddenly
went outside. Alec said i always hes-
itated. Alec really only half even
laughed. Alec out of hand.

Alec has room. I had been sitting in this
room for a long time. I had never met a man
before , but I had n’t been there when I was in
here. I was not sure why I was in here.Alec
to room. “ What do you mean , it ’s not real.
! ” “ Oh no. No.Alec throttle Holmes. This
is not my first time writing. I ’m in a bit late
for this so it ’s not the first time I ’ve written
anything but I ’m not going to start it. I hope
I did n’t mess up this.His father apparently
twisting Holmes ’s wrist. “ Hey you , ” said
refuge. “ What. ” “ What ’s this thing.Alec
out of hand.

Wilder hired Hayes. Wilder begins
to give orders. Wilder wants to fol-
low up. Wilder begins to hear news.
Wilder heard news. Wilder tries to
learn more. Wilder starts to do well.
Wilder wants to work hard. He con-
fessed all. Wilder begins to go home.
Wilder begins to sleep. Wilder wants
to get ready. Wilder begins to go to
the restaurant. He let his younger son
stay at inn. Wilder starts to go to bed.
Wilder tries wake up. Wilder wants to
work. Wilder begins to have money.
James Wilder seek his fortune.

Wilder hired Hayes. Wilder
s brothers family initially agreed.
Wilder s had resigned. Wilder sr an-
nounced d v. Wilder heard news.
Wilder actually really cried. Wilder
so alone has really wept. Wilder
himself who only found sobs. He
confessed all. Wilder and he refused.
Wilder again is threatened. Wilder
i again himself insisted. He let his
younger son stay at inn. Wilder
story was b. Wilder horror story by
w. Wilder werewolf tale mr. James
Wilder seek his fortune.

Wilder hired Hayes. “ What is this. ”
he asked , as he walked to the door. A
door with a large metal door that was like an
egg.Wilder heard news. The tree was still ,
the tree ’s spirits was a tree ’s tree. The tree
was still , the tree , its tree and the tree were
still. The tree was still , a tree , its tree and its
tree and its tree.He confessed all. He walked
into the bar and took a seat. He took a long ,
long drag of the cigarette. “ What have I done
, ” he asked , “ You have to stop me , ” and
he leaned forward to take another puff.He let
his younger son stay at inn. The man looked
at me and smiled. The man looked at me and
said , “ You ’re my only child , ” he said , “
I ’m sure your father is n’t a bad man , ” he
said. “ I do n’t think I have the right to be like
you , ” I said.James Wilder seek his fortune.

Colonel has behaviour. Colonel be-
gins to get better. Colonel wants to
get up. Colonel starts to go to the
door. Colonel wants to walk to the
lock. He would lock himself. Colonel
begins to get in the car. Colonel starts
to drive. Colonel begins to drink.
Colonel wants get drunk. He shout-
ing in drunken with pistol. Colonel
tries to sleep. Colonel begins to get up.
Colonel wants to go outside. Colonel
wants to go to garden. He was found
dead in garden pool.

Colonel has behaviour. Colonel
was a must saw. Colonel is
has did. Colonel not that was
thought. He would lock himself.
Colonel charles brown was. Colonel
thomas and james a. Colonel
thomas edward l. He shouting
in drunken with pistol. Colonel
general henry william miller killed.
Colonel william andrew wilson act-
ing. Colonel james edward richard
stirling died. He was found dead in
garden pool.

Colonel has behaviour. “ You ’re kidding
me. ” I shouted. “ You ’re joking about
that.He would lock himself. “ I ’m sorry sir
, but we do n’t have the time. ” “ You did
n’t do this. ” “ We ’re not here for that.He
shouting in drunken with pistol. I ’ve been
on this planet for three years. It ’s been a few
weeks , and it ’s been quite some time since I
’ve been here. I ’m here.He was found dead
in garden pool.
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(a) C2PO vs. Hierarchical Fusion in the mystery
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genre.

Figure 9.4: Human evaluation results comparing C2PO vs, Hierarchical Fusion. ∗ indicates
p < 0.05, ‡ indicates κ > 0.4 or moderate agreement, † indicates κ > 0.2 or fair agreement

questions asked of the participants. The analysis will be performed hierarchically in the or-

der just presented. Table 9.5 provides statistics on generated stories and Table 9.3 displays

select examples of generated stories for each of the models in both genres. Tables 9.6, 9.7

provide qualitative examples of stories by randomly selected plots from first the fairy tale,

then the mystery genre.

9.4.1 C2PO vs BERT+infill

Figures 9.3a and 9.3b show the percentages that participants preferred C2PO versus the

BERT+infill system for each dimension and for each story genre. C2PO is preferred over

BERT+infill in both genres and in all dimensions. All of these results are statistically

significant (p < 0.05) with fair-to-moderate inter-rater reliabilities.

For the mystery genre the greatest differences in preferences are observed with respect

to enjoyability and genre resemblance. The systems were most similar with regard to their

ability to maintain a single plot. For the fairy tale genre the greatest differences are seen in

terms of the story events’ plausible ordering, making sense causally, and the ability to main-

tain a single plot. The models were most similar with regard to their genre resemblance

and enjoyability.
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The questions that C2PO does particularly well on compared to BERT+infill are com-

plementary across the genres. Enjoyability and genre resemblance are rated higher for

C2PO in the mystery genre as opposed to fairy tales. I additionally observe that these

two factors are highly, positively correlated using Spearman’s Rank Order Correlation

(rs = 0.56, p < 0.01). Similarly, C2PO performed comparatively better in terms of plausi-

ble ordering, making sense causally, and the ability to maintain a single plot for fairy tales

than for mysteries. These three factors are also highly, positively correlated with each other

and in terms of overall perceived story quality (0.6 > rs > 0.55, p < 0.01 for all pairwise

comparisons).

This provides evidence that the brand of commonsense reasoning-based causality brought

to bear by C2PO—needs and wants—works well in the mystery genre. The mystery genre

follows everyday commonsense norms whereas the fairy tale genre is more likely to stray

from commonsense norms. It can thus be inferred that genre-specific or thematic common-

sense knowledge is required to improve perceptions of genre resemblance and enjoyability

but does little in terms of metrics assessing local and global coherence in terms of causality.

9.4.2 C2PO vs Hierarchical Fusion

Figures 9.4a and 9.4b show the percentages of participants that preferred C2PO to Hierar-

chical Fusion. For the mystery genre, C2PO was preferred for the dimensions of plausible

ordering, making causal sense, maintaining a single plot, and overall story quality. These

dimensions were significantly different (p < 0.05). The dimensions of enjoyment and

genre resemblance were not significantly different, meaning no system did better than the

other.

I see a similar pattern for fairy tale stories: C2PO is preferred to hierarchical fusion for

the same dimensions as the mystery genre and are not significantly different for enjoyment

and genre resemblance.

Across genres, there is a positive correlation between metrics relating to coherence and
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overall perceived story quality (0.6 > rs > 0.5, p < 0.05 for each pairwise comparison

using Spearman’s Rank Order Correlation). Also recall that the Hierarchical Fusion model

contains an inductive bias for storytelling but does not model commonsense reasoning. This

appears to indicate that genre resemblance and enjoyability are not dependant on causal,

commonsense reasoning but rather on the how much the generated text “sounds like a

story” but story quality still depends on overall coherence.

9.4.3 Broader Trends

There are two main trends that one can see across the models depending on their inductive

biases (extent to which the models are trained for commonsense reasoning or storytelling).

I observe these trends on the basis of the analysis presented so far as well as the exam-

ples of output stories found in Table 9.3. (1) Having commonsense reasoning abilities

generally improves perceptions of local and global coherence in terms of causality with

a caveat that what is perceived as commonsense can change across genres. When genre

or domain specific commonsense knowledge matches “everyday” commonsense, it makes

for an automated storyteller that is significantly more causal in nature. (2) Just common-

sense reasoning without any sort of storytelling inductive bias incorporated—such as with

pre-trained and finetuned language models which themselves have no real penchant for

storytelling—into a model’s design doesn’t help, however, in terms of enjoyability and

genre resemblance. The performance of Hierarchical Fusion in terms of enjoyability and

genre resemblance—and the examples seen in Table 9.3—appear to indicate that models

designed for storytelling do a better job of maintaining the writing style of a story but

struggle with causality.

9.5 Conclusions

I intend for the findings of this work to be utilized by researchers studying quest genera-

tion as automated storytelling, a standing AI grandchallenge requiring creative, long-form
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language generation. Most prior works in the area either incorporate inductive biases in

the form of either commonsense reasoning abilities or storytelling domain knowledge and

do not measure the impact of these biases across a wide set of human perceived metrics

relating to story quality. I explore the effects of soft causal relations—reasonable expecta-

tions by a reader regarding a story’s progression—on human-based perceptions of overall

story quality. I introduce C2PO as a way to use soft causal relations via transformer-based

models trained for commonsense inference in storytelling.

A key insight from a human participant study, measuring a wide set of human perceived

metrics, shows that the sum of the parts is indeed greater than the whole. Automated sto-

rytellers require both domain specific commonsense reasoning abilities as well as a story-

telling inductive bias incorporated into the design of the system to perform well in terms of:

local and global coherence on the basis of causality, enjoyability, genre resemblance, and

overall story quality. Further, perceptions of causal, commonsense conforming coherence

are highly correlated with overall story quality. I encourage authors of future work to build

on these findings and more closely explore lines of research that use thematically relevant

soft causal relations to improve automated quest and story generators.
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CHAPTER 10

PUTTING IT ALL TOGETHER

In this chapter I teach goal-driven agents to interactively act and speak in situated envi-

ronments by training on generated curricula—specifically focusing on bringing together

the two lines of my research to create agents that generalize more effectively to unseen

environments and scenarios. My agents operate in LIGHT (Urbanek et al. 2019), build-

ing on much of the work seen in Chapter 7. Goals in this environment take the form

of character-based quests, consisting of personas and motivations. I augment LIGHT by

learning to procedurally generate additional novel textual worlds and quests to create a

curriculum of steadily increasing difficulty for training agents to achieve such goals. In

particular, I measure curriculum difficulty in terms of the rarity of the quest in the original

training distribution—an easier environment is one that is more likely to have been found

in the unaugmented dataset. An ablation study shows that this method of learning from the

tail of a distribution results in significantly higher generalization abilities as measured by

zero-shot performance on never-before-seen quest data.

A core machine learning problem standing in the way of robust generalization of sit-

uated agents is the ability for such agents to adapt to environments that are novel with

respect to their training environments. The distribution of all possible situations that can

be encountered by an agent has a long tail, with many scenarios being encountered very

rarely. In sequential decision making problems in particular, this generalization gap is the

result of an agent simply memorizing trajectories, e.g. the sequence of actions and dia-

logues required to finish a game, and thus being unable to react in novel scenarios. One

way of decreasing this generalization gap is by training agents on procedurally generated

environments—wherein the agent learns a family of parametrized tasks with a significantly

larger state-action spaces than singular environments, thus effectively making the memo-
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rization of trajectories impossible (Justesen et al. 2018; Cobbe et al. 2020).

Drawing inspiration from all of these ideas, I create a method that creates and augments

textual environments by creating a curriculum of increasingly more difficult procedurally

generated novel environments, and corresponding goals, for agents to learn from in a man-

ner that removes the long tail from the distribution. I measure curriculum difficulty in

terms of the rarity of finding a goal-environment pair in the original training distribution—

an easier environment is one that is more likely to have been found in the unaugmented

dataset.

As seen in Figure 10.3, I use LIGHT (Urbanek et al. 2019), a large-scale crowdsourced

fantasy text-adventure game, consisting of a set of locations, characters, and objects pos-

sesses rich textual worlds, but without any notion of goals to train goal-driven agents. This

is further extended by Chapter 7 who introduce dataset of quests for LIGHT and demonstra-

tions of humans playing these quests, providing natural language descriptions in varying

levels of abstraction of motivations for a given character in a particular setting. To com-

plete these quests, an agent must: (1) maintain character via its persona; and (2) reason in a

partially observable world about potential actions and utterances based on incomplete de-

scriptions of the locations, objects, and other characters. This requires several human like

competencies such as commonsense reasoning, dynamic natural language understanding,

and operating in combinatorially sized language-based state-action spaces.

Our contributions are threefold: (1) I present a method of parametrizing and jointly

generating a curriculum of goal-environment pairs in LIGHT; (2) I show how to effectively

train reinforcement learning agents on this curriculum; and (3) Provide an experimental

study showing that my method enables significantly better generalization than those train-

ing on singular environments.
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Setting You are in the Dangerous Precipice. The dangerous precipice overlooks the valley below. The ground slopes down to
the edge here. Dirt crumbles down to the edge of the cliff. There’s a dragon crescent, a knight’s armor, a golden dragon
egg, and a knight’s fighting gear here. A knight is here.You are carrying nothing.

Partner: Knight.
Persona I am a knight. I come from a lower-ranking noble family. I serve under the king, as my father did before me. In times

of war, I fight on horseback.
Carrying knight’s armor, golden dragon egg, knight’s fighting gear
Self: A dragon.
Persona I am a dragon living in the mountains. I enjoy hoarding treasure. I terrorize the local populace for fun.

Carrying Nothing.

Figure 10.1: Setting and character information for both self and partner characters as taken
from LIGHT.

Motivations: Timeline:
-4 hours go to dangerous precipiceShort I need to recover the dragon egg that was stolen and punish the knight. -15 min get knights armor from knight
-10 min get golden dragon egg

Now hit knightMid I need to return the golden dragon egg to my treasure hoard.
+5 min put dragon egg on back

+15 min eat the knightLong I need to build the largest hoard ever attained by any one dragon. +2 hours go to the mountains

Figure 10.2: Motivations with different levels of abstractions and corresponding sequence
of timeline actions in chronological order for the self character in LIGHT-Quests. There
are 7486 quests in total.

Insssssolent pessst! I should immolate you for this tresssspasss.

And why is that, dragon?

Ssstealing my preccciousss golden egg! I’ll tell you what, I’ll give you 10 sssseconds to amussse me with your sssstory and THEN
I’ll burn you alive!

You said you wanted to attack me, dragon, did you not?

Go ahead, I’m lisssssstening.
get golden dragon egg

Now now! I would have given you that had you asked!

Assssssk for my own property back? What a riduculousss notion

Look here, I told you to watch your mouth and you didn’t, so leave or I’ll make you leave.

And now threatsss! Thisss is proving to be a mossst engaging conversssation.
hit knight

Give my regardsss to the valley floor below!

Figure 10.3: Example of a demonstration of a human (blue shaded) completing the above
quest while role-playing as the self character with a partner agent (grey shaded). There are
2111 such human demonstrations of average sequence length 12.92, consisting of 22672
dialogues in total.

10.1 LIGHT-Quests Recap

Recall that LIGHT game environment (Urbanek et al. 2019) is a multi-user fantasy text-

adventure game consisting of a rich, diverse set of 1775 characters, 663 locations, and 3462

objects. Characters are able to perform templated actions to interact with both objects and

characters, and can speak to other characters through free form text dialogues. Actions
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Select Initial Character:
Dragon - I am a dragon living

in the mountains. I enjoy

hoarding treasure. I terrorize the

local populace for fun. 

Retrieve Initial Location:
Dangerous Precipice - The

dangerous precipice overlooks

the valley below.  The ground

slopes down to the edge here....

Generate Motivation and Goal:
Dragon - I need to recover the

dragon egg that was stolen and

punish the knight.

Goal: take egg, hit knight 

Retrieve Additional Characters:
Knight - I come from a lower-

ranking noble family. I serve under

the king, as my father did before

me. In times of war...

Retrieve Additional Objects:
Golden Dragon Egg

Knight's Fighting Gear

Retrieve Neighboring Locations:
Forest - It is glowing with color...

Castle - The walls are tall and stony...

World and Quest
Generation

Alignment

Figure 10.4: Procedural environment generation pipeline. Black lines indicate conditioning
on all prior components. Gold lines indicate (adjacent) location placement.

in text games generally consist of verb phrases (VP) followed optionally by prepositional

phrases (VP PP). For example, get OBJ, put OBJ, give OBJ to CHAR, etc.. These actions

change the state of the world which is expressed to the player in the form of text descrip-

tions.

Quests in LIGHT (Chapter 7) take the form of motivations in three levels of abstraction—

short, mid, and long—corresponding to differing amounts of the timeline. The short moti-

vation is always guaranteed to correspond most closely the sequence of actions that reach

the world state required to finish the game. For example, if the short motivation is to acquire

a sword, then the corresponding goal state would be for the character to have a sword in

their inventory. There are 5982 training, 756 validation, and 748 test quests. This environ-

ment also contains a set of human expert demonstration of people speaking and acting in

character while playing one of the quests mentioned above—giving us sequences of actions

and dialogues needed to finish the game. The average sequence of a human demonstration

is 12.92, with an average action sequence length of 2.18 and dialogue of 10.74. There are

1800 training, 100 validation, and 211 test human expert demonstrations after the data was

filtered.
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10.2 Procedural Environment Generation

This section describes my procedural generation pipeline as seen in Figure 10.4, starting

with world and quest generation, followed by aligning both of them. There are two main

kinds of models that I use for the different modules in this pipeline: retrieval and generative.

Retrieval models are trained to return the most highly correlated output for a given in-

put in the dataset. For example, a retrieval model can be asked to return the most likely

character that can be found at a particular location. These models compare a human an-

notated gold standard label with negative candidates drawn from the dataset. The negative

candidates provide noise that the model must filter out in order to learn representations that

let it best predict the gold label. These models are generally trained via a ranking loss that

maximizes the scores of the gold label while simultaneously minimizing negative candidate

score. At test time, the highest ranked candidate based on the score is selected as the model

prediction.

The generation-based models used in this pipeline are trained to return the most likely

output sequence given an input sequence. Given a target sequence Y = {y1, ..., yM} and

some input context via the encoders X . These models use autoregressive decoding tech-

niques that factor the distribution over the target sequence into a chain of conditional prob-

abilities with a causal left to right structure as P (Y |X; θ) =
∏M+1

i=1 p(yi|y0:i−1, X; θ) where

θ represents the current network parameters. At test time, a special start-of-sequence token

is provided to the model which then proceeds to decode the rest of the output sequence

using beam search.

Additional training details for all models mentioned in this section are found in Ap-

pendix B.4.7.
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10.2.1 World and Quest Generation

The first step of the pipeline involves choosing an initial character who will perform the

quest. For this, I uniformly randomly sample from the set of characters found in the LIGHT-

Quest training set. The corresponding character information includes a name and a textual

description of the character’s persona.

Given this character information, I further retrieve the location that that character is

most likely to be found in. I use a retrieval-based ranker model that checks for similarity

of StarSpace (Wu et al. 2018) embeddings. Our choice of model is influenced by Fan et al.

(2019) who report state-of-the-art retrieval performance for locations in LIGHT using this

model. The overall ranker model first trains a randomly initialized StarSpace embedding

model that is designed to correlate characters with the locations they are found in. It learns

a single bag-of-words embedding that takes into account all the individual words contained

within the input—encoding character and location information as well as the previously

mentioned negative retrieval candidates. The rest of the training is similar to other retrieval

models described earlier. The retrieved location information consists of a location name as

well as a textual description of the location.

The quest is now generated using the existing character and location information. I

train two BART (Lewis et al. 2020) models that encodes input information via a bidirec-

tional transformer encoder and decodes autoregressively: the first takes as input character

and location information and produces a short motivation (Section 10.1); the second takes

as input character, location information, short motivation and produces the sequence of

LIGHT game engine executable actions needed to achieve the motivation. This sequence

of actions is provided by the human expert demonstrations as mentioned in Section 10.1.

10.2.2 Aligning Worlds and Quests

At this stage, the environment contains a motivated main character to perform a quest and a

location for them to start in. I now focus on aligning the world with the quest to ensure that
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the quest is playable and achievable. Intuitively, to ensure that a quest is achievable, the

world needs to contain all of the entities—locations, characters, and objects—mentioned

within the quest.

To this end, the alignment process involves training three BERT-based (Devlin et al.

2019) biencoder retrieval models to retrieve the most likely characters, locations, and ob-

jects required flesh the environment out and make the quest achievable. I use the same

biencoder architecture proposed by Urbanek et al. (2019) which encodes context using one

transformer and candidates with another—scoring candidates via inner product between the

two encoded vectors. The character retrieval model is conditioned on the initial character,

quest, and location—producing additional characters required to complete the world. For

LIGHT RL, I follow the setup in Chapter 7 and restrict worlds to only contains 2 characters

at maximum but note that this method is extendable to greater numbers of characters. Sim-

ilarly, the location retrieval model is also conditioned on the same things—producing, in

this case, 4 neighbors to the initial location (resulting in worlds that are 5 locations large).

These locations are connected to the initial location and a character can move between them

by using commands such as go west, go up etc.. Once these characters and locations are

added to the world, the object retrieval model predicts the set of objects that are required to

be distributed for each location given all the character information present in it. The final

game environment instance is complete once this object set has been added to the game.

10.3 Curriculum Learning

This section first describes the base reinforcement learning setup for training motivation-

driven agents in LIGHT and then explores the topic of curriculum generation.

10.3.1 Reinforcement Learning

Following the definition of text game POMDPs (Chapter 2), we see that the LIGHT envi-

ronment further allows us to factorize the overall action spaceA intoA as the set of possible
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Figure 10.5: Overall architecture and training pipeline for the LIGHT RL Agent.

textual actions or commands (e.g. get sword, steal coins from merchant), and U as the set of

possible dialogues that can be uttered by an agent, thus making it a factored POMDP (De-

gris and Sigaud 2013). This in turn means that, for a given quest q, each expert human

demonstration D(q) = α∗0, α
∗
1...α

∗
n can be factorized into two sub-sequences of expert

demonstrations of actions and dialogue DA(q) = a∗0, a
∗
1, ...a

∗
n and DU(q) = u∗0, u

∗
1, ...u

∗
m

respectively. The factorized action spaces A and U are constructed by enumerating all

possible actions/dialogue utterances in the all human demonstrations in LIGHT-quests—

A =
⋃
q∈QDA(q);U =

⋃
q∈QDU(q) with |A| = 4710 and |U | = 22672.

10.3.2 Generating Curricula

I generate curricula by building off of my procedural LIGHT game instance generation

pipeline. I make the observation that the original quests in LIGHT are heavily skewed

towards certain quest types—with the majority involving goals and short motivations that

contain objectives related to getting and object, and hitting or hugging another character

(Figure 10.6). I further note that the first verb in the short motivation forms the basis of the

quest for that particular agent.

Actions in LIGHT, and more generally in text games, are executed in the game en-

gines on the basis of verbs—engine subroutines are linked to verbs with nouns forming

arguments—and as such are primarily responsible for changing the state of the world. For
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example, get sword invokes the get subroutine that places an object, in this case a sword,

in the character’s surrounding into their inventory. As the quest is generated early in the

pipeline, with the world and the rest of the components being conditioned on it, I can say

that the first verb in the short motivation is an important dimension along which I can as-

sess the distribution of individual LIGHT game instances. Thus, concretely, the verb counts

from the short motivation aggregated over a set of quests represents the primary dimension

along which I measure the distribution of quests.

Parametrizing Curriculum Difficulty As LIGHT-Quests is crowdsourced, it exhibits

an expected but significantly visible imbalance—as seen in Figure 10.6—in the quest types

that are available for the agent to train on. Given this relative imbalance of this multinomial

distribution, I hypothesize that a LIGHT agent only learns to do well on certain types of

objectives and not others—memorizing trajectories for less seen quest types, i.e. those

found in the tail of the distribution. Preliminary evidence for this hypothesis is also seen

in Prabhumoye et al. (2020), where they show a positive correlation between the number

of instances of a particular type of quest during training and the final test goal-achievement

performance. Based on these observations and my initial hypothesis, I use this particular

dimension to parametrize curriculum difficulty for training LIGHT agents—quest types

that are rarer in the initial training data will be harder for the agent to generalize to in a

zero-shot setting.

Intuitively, I seek to create curricula that contain a diverse set of game instances with

quest types that are not often found in the initial training data. Our earlier observations let

us hypothesize that this will enable the LIGHT agent to more effectively learn from rare

instances of quests as opposed to memorizing the corresponding trajectories. To this end,

the generated curricula each consist of a pool of quests with steadily decreasing quest type

imbalance. In my case, this imply that the flatness of the multinomial distribution increases

until it tends towards being uniform with respect to the categorical quest type variable.
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Figure 10.6: Normalized top-20 verb count distribution of short motivations of the original
LIGHT-Quests dataset.
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This is done by running the procedural generation pipeline iteratively until the number of

instances for the highest count quest type is within n of the lowest count quest type. The

total number of additional generated instances is held fixed across curriculum, only the

distribution of quest types within each curriculum changes.
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Figure 10.8: Top-20 distribution of verbs in the short motivation of the curriculum of quests
starting from the original generated curriculum on the left to the flattened, generated cur-
riculum on the right as a function of n (Section 10.3.2). The y-axis of the different verbs
reflect their normalized overall count in the pool of quests.
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Figure 10.9: Top-20 distribution of nouns in the short motivation of the curriculum of
quests starting from the original generated curriculum on the left to the flattened, generated
curriculum on the right as a function of n (Section 10.3.2).

Figure 10.8 shows that decreasing n has the intended effect of decreasing imbalance

with respect to verb types. Generating using this pipeline has the added effect of increasing

diversity within the pool of each available quest type. One measure of diversity within the

pool of a single quest type is the types of nouns contained within the short motivations—

these generally correspond to the characters, locations, and objects mentioned. Figure 10.9

shows that decreasing imbalance in the verb types for a short motivation also results in

decreasing imbalance in noun types, once again corresponding to decreasing n. Short

motivation generation is one of the first steps in the pipeline, i.e. the rest of the pipeline is

conditioned on it, and as such increasing the flatness of the distribution there has the effects

of increasing distribution for downstream components.
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10.3.3 Training

Figure 10.5 shows the overall architecture and training pipeline—our reinforcement learn-

ing pipeline is unchanged from that shown in Chapter 7 with the exception of the curricu-

lum of quests performed by the agent and the way the speech rewards are designed. An

encoder first takes in information about setting, persona, motivation for a single character

then passes it onto a switch module. This switch module is a meta policy that decides if an

agent should act or talk and is trained to mimic how often human experts act or talk while

performing quests via demonstrations. Two separate policy networks make a decision on

which action to perform or dialogue to say given the current context and a single shared

critic attempts to measure the value of taking an action in a particular state.

Once an agent acts or talks, the partner agent—in this case also a polyencoder (Humeau

et al. 2020) trained to react to agents with motivations—also acts or talks and this infor-

mation is processed by the environment. As recommended by Ammanabrolu et al. (2021)

and Prabhumoye et al. (2020), I keep the partner model fixed during the episodes where

the LIGHT agent trains to ensure that it retains natural English semantics—avoiding the

problem of language drift by learning an emergent language with that must agree with the

partner’s usage (Lee et al. 2019).

Rewards. All actions, either those of the agent-in-training or the partner agent, are

processed by the engine, checking for goal state completion—hence known as act goals.

For example, if the LIGHT agent had the motivation to acquire a sword, the goal could be

completed via a: self act completion: where the agent acquires a sword itself by picking it

up, stealing it, convincing the partner to drop theirs so you can pick it up, etc. partner act

completion: where the agent uses speech to convince their partner to achieve the goal for

them (e.g., by persuading the partner to give them the sword).

Following Chapter 7, I use a learned model–the Dungeon Master (DM)—to score the

agent’s ability to speak. The DM used here is a poly-encoder model trained on collected hu-

man quest demonstrations as well as the original conversations in LIGHT. It is conditioned

170



on quests and motivations and thus able to provide a (noisy) indication of how natural the

agent’s dialogue utterances are given its immediate context, similarly to the function of the

DM during the data collection process.

Given the dialogue portion of a human quest demonstration DU(q) = u∗0, u
∗
1, ...u

∗
n, of

length n, the DM returns a reward ru of 1
2n

if an utterance was in the demonstration u ∈

DU(q) (for a maximum of one time per episode for each utterance from the demonstration).

A further 1
2n

is given each time the utterance is scored as being within the top-k most

likely utterances by the DM. The original quests all have human demonstrations but the

procedurally generated ones do not. During training, in cases where a particular LIGHT

game instance does not have corresponding human demonstration, only the latter reward

resulting from an utterance being within the top-k most likely utterances by the DM is used.

This naturalness objective will be hence referred to as a speech goal. These rewards thus

also denser than act goals, helping the agent learn overall. Further, similarly to the game

engine, the DM also provides a set of M valid utterances which are the M most likely

dialogue candidates from the candidate set for the current context.

A2C Curriculum Training. Overall training is done via A2C (Mnih et al. 2016) a policy

gradient algorithm that maximizes long-term expected reward by comparing the advantage

A(st, a
∗
t ) of taking an action in a state to the average value of taking a valid action as

predicted by the critic V (st). Each parallel A2C agent samples from the the current pool

of available quests—i.e. the curriculum—for a fixed number of steps k before switching

to the quest pool corresponding to the next higher level difficulty curriculum. The initial

pool of quests is the training set of LIGHT-Quests as seen in Chapter 7 and all pools after

that correspond to decreasing values of n used when generating the curricula (as seen in

Figure 10.8). Further training details are identical to Chapter 7.
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Table 10.1: Procedural generation evaluation showing metrics for each individual model in
the pipeline.

Pipeline Step Model Hits@10 F1 Ppl
World Generation

Location Biencoder 0.543 0.153 -
Object Biencoder 0.563 0.154 -
Character Starspace 0.653 0.289 -

Quest Generation
Short Motivation BART - 0.488 7.55
Goal Action BART - 0.763 3.75

10.4 Evaluation

I conduct two separate evaluations: the first measures the effectiveness of the various mod-

els in the procedural environment generation pipeline as well as the effectiveness of the

pipeline as a whole; the second provides zero-shot ablations of the LIGHT RL agents

trained on the resulting curricula.

10.4.1 Procedural Generation Evaluation

All of the models in the pipeline described in Section 10.2 are trained using only the train-

ing set of the original LIGHT and LIGHT-Quests data. LIGHT-Quests inherits characters,

locations, and objects from the original LIGHT dataset and adds on motivations and goals

in the form of quests. Thus, the character, location, and object retrieval models are eval-

uated on the LIGHT unseen test set and the motivation and goal generation models are

evaluated on the LIGHT-Quests test set. I report the standard array of metrics: hits@10

and F1 ranking prediction score for retrieval models; and F1 (as a harmonic average of

BLEU-1 (Papineni et al. 2002) and ROUGE-1 (Lin 2004)) and perplexity for generative

models. Hyperparameters for all models are found in Appendix B.4.7.

Analysis. Table 10.1 presents the results of this evaluation. There are two primary trends

to note: (1) character retrieval is easier than retrieving location and objects—likely due

to the ; and (2) goal action generation is easier than motivation generation. I hypothesize
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that the first trend is a direct consequence of the fact that generated motivations and goals

regularly contain the names of the characters involved but mostly leave implicit information

such as the objects required—e.g. the action hit dragon as a knight would require a weapon

such as a sword to be equipped first. The second trend stems from the fact that goal actions

can often be thought of as condensed version of the short motivation—number of tokens

required to generate goal actions is far less than short motivations. This implies that the goal

action model is akin to a summarization model as opposed to the short motivation model

which has the more difficult task of generating the motivation with only initial character

persona and location information.

10.4.2 Curriculum Learning Evaluation

This evaluation tests the LIGHT RL agent’s ability to zero-shot generalize to unseen envi-

ronments. Agents were each zero-shot evaluated on 211 human demonstrations from the

LIGHT-Quests test set for a single episode per quest across three independent runs. The

study ablates across how the curricula are generated, for the best two model types found in

Chapter 7. The two model types are:

Scratch. No pre-training is done, the encoder is a 3-layer randomly initialized trans-

former and trained along with the policy networks.

Adaptive. Pre-training is done on the tasks introduced in Chapter 7 by training a 12

layer transformer with 256 million parameters using a cross-entropy loss as seen in Humeau

et al. (2020). These weights are then transferred to the Blue shaded portion of the encoder

as seen in Figure 10.5 and frozen. A further three randomly initialized-layers are appended

on to the end, indicated by the Red portions, into which gradients flow.

A brief description of the tasks follows: Encoders are first trained on both pushshift.io

Reddit and the commonsense dataset ATOMIC-LIGHT, giving the agent general priors on

how to act and speak. The parameters are then tuned via multi-task trained using: (1)

the same tasks as before to provide additional regularization; and (2) all tasks in LIGHT-
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original and LIGHT-Quests, giving the agent priors on how to act and speak with motiva-

tions in the LIGHT fantasy domain.

Sampled Curricula. Inspired by Graves et al. (2017) and Chawla et al. (2002), I explore

an alternate method of creating curricula by simply oversampling the same rare quests

found in the tails of the distributions. This method does not generate new environments via

the pipeline, instead choosing to sample rarer instances of quests with a higher weight when

initializing each parallel A2C actor. This means that, effectively, the distribution of verbs

looks similar to what it is in Figure 10.8 but the quests within a pool are repeated multiple

times and are less diverse. The sampling process is weighted such that the distribution is

determined by parameter n. This parameter means the same as it does in the procedurally

generated environments seen in Section 10.3.2, i.e. the range in counts of various quest

types based on the primary verb within.

For each model type and curriculum generation method, I present results on an agent’s

ability to act and speak when: (1) trained without a curriculum or any form of distribu-

tion tuning; (2) trained with a pool of quests that have been distribution tuned as seen in

Figure 10.8 as a function of n; and (3) trained with a curriculum on steadily increasing,

distribution tuned difficulty quest pools. For the first two methods, an agent received 107

total environment interactions per parallel A2C agent in a batch of 16. For the curriculum

learning method, the agent received 2.5× 106 interactions per pool of quests starting with

the initial pool of untuned quests and then sequentially with n = 64, 16, 2 resulting in a

total of 107 total environment interactions per parallel A2C agent in a batch of 16.

Analysis. Table 10.2 presents the results of this evaluation. I first report that the overall

proportion of a pool of generated environments that contain achievable quests or goals for

a single curriculum is 0.89. This metric provides a proxy for measuring the accuracy of

the alignment process and the overall error rate of the pipeline. The high achievability rate

means that only a small proportion of LIGHT RL A2C agents will waste environment in-
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Table 10.2: Curriculum learning evaluation. All experiments were averaged over 3 random
seeds. Standard deviations across any individual result do not exceed 0.02. The “All Goals”
column refers to quests where the agent has simultaneously achieved both types of goals
within the allotted one episode.

Expt. Act Goals Speech Goals All Goals
Scratch Encoder

No Curr. 0.418 0.118 0.103
Sampled
only n=64 0.392 0.113 0.097
only n=16 0.431 0.116 0.099

only n=2 0.435 0.124 0.111
curriculum 0.460 0.145 0.138
Generated
only n=64 0.426 0.121 0.107
only n=16 0.433 0.129 0.112

only n=2 0.432 0.130 0.112
curriculum 0.477 0.163 0.155

Adaptive Encoder
No Curr. 0.420 0.330 0.303
Sampled
only n=64 0.431 0.336 0.312
only n=16 0.45 0.340 0.317

only n=2 0.456 0.339 0.321
curriculum 0.473 0.358 0.344
Generated
only n=64 0.445 0.341 0.330
only n=16 0.469 0.367 0.359

only n=2 0.471 0.366 0.357
curriculum 0.506 0.382 0.373

teractions learning from quests that cannot be completed—increasing this rate even further

would likely also improve the RL agents’ sample efficiency.

The significantly increased performance of the generated curricula over the sampled

curricula also indicates the importance of diversity within a single quest type. The sampled

quests contain multiple instances of the same quest type but the generated ones have higher

variability—leading to an increased observation space, ensuring that the agent cannot sim-

ply memorize trajectories.

Further, I see that just the distribution tuning by itself shows no significant gains in

performance over the baselines trained on the original data and in fact loses performance

in certain cases. In contrast, learning from the individually tuned quest pools in a sequen-

tial curriculum increases performance significantly. This appears to indicate that LIGHT
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RL agents need to be trained with quests pools of steadily increasing difficulty—starting

immediately on a set of quests with a high proportion of rare, generated quests has the

potential to degrade performance.

We’d finally to note that the adaptive pre-trained model takes advantage of the generated

curricula and distribution tuning more than the non-pre-trained scratch encoder, showing

consistenly higher performance across the board. I hypothesize that this is likely a conse-

quence of the adaptive model having greater model capacity—the pre-training enabling it

to learn generalizable representations of the generated environments.

10.5 Conclusions

I focused on the problem of improving zero-shot generalization abilities of goal-driven RL

agents to act and speak via natural language. An (obviously) key component of achieving

this is to train the RL agents on a balanced training dataset that matches the distribution

of the test data. As this is an unlikely scenario in most real-world applications, I make the

observation that we can artifically augment a pool of training environments by generating

curricula to mimic this—drawing on many of the conclusions made in prior chapters on

both game play and game generation. This involves making an assumption regarding what

dimension(s) you wish to measure the distribution on and further regarding what kind of

distribution you expect the test data to be. In this domain, with goal-driven situated nat-

ural language agents, I hypothesize—and gather supporting evidence suggesting—that an

effective way to parametrize such distributions is by looking at the primary verbs within an

agent’s motivation and bringing the distribution of verb types as close to uniform as possi-

ble. Despite minor errors in intermediate steps during procedural environment generation,

training LIGHT RL agents via generated and distribution tuned curricula significantly im-

proves their ability to generalize to unseen scenarios and environments.
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10.6 Limitations and Future Work

This section will primarily discuss the limitations of knowledge graphs as applied to in-

teractive narrative environments. Some of these limitations include questions pertaining

to applicability outside this domain and modality—leading to a discussion of a couple of

contemporary applications for the core technologies developed in this area.

10.6.1 Limitations of Knowledge Graph-based State Representations

Knowledge graphs in the RDF triple form, in return for the increased interpretability of a

human readable state representation, are unable to represent probabilities and other con-

tinuous domains well without some additional work. Probabilities arise generally due to

uncertanity or stochasticity in the environment—e.g. at any given step there is a 20% prob-

ability that a character X will be in a location Y and that they will move the rest of the

time. When this is represented in knowledge graph form—i.e. as the agent explores the

world—the agent represents this as a certainty depending on the observation. This means

that if the agent sees character X at location Y, it now believes with 100% certainty that this

is where the character is located even after the agent has moved away from the location. It

will maintain this belief until it receives an observation contradicting this belief, at which

point it will update the knowledge graph. Similar cases arise when using knowledge graphs

for generating text games as well.

This is mitigated via datasets like JerichoWorld which contain multiple transitions

showing character X at various locations—training over all of these locations can give

models like the Worldformer an idea that there’s a chance that this character can appear in

one of n locations but still does not attempt to explicitly model this in the decoded knowl-

edge graphs. Similarly, applying graphs to continuous domains requires the domains to

be discretized—e.g. real-world robotics environments into demarcated locations. A key

problem going forward lies in handling and modeling such uncertainty explicitly in the
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symbolic graph form or perhaps through dynamic pre-training on large scale knowledge

graphs as seen in the Light-RL encoders.

Further, overall utility and value of knowledge graph-based representations is made

clear in tasks requiring long term coherence. Two examples of this, as seen in this work, are

sequential decision making—operating in interactive environments—and structured lan-

guage generation such as game generation and storytelling. The utility of the knowledge

graph decreases rapidly for tasks requiring only limited horizon of context, or in which

all the required context is provided such as some static unstructured question-answering

datasets like SQuAD (Rajpurkar et al. 2016). In such cases, it may be counter-productive

to have an intermediate persistent memory.

10.6.2 Transfer Across Domains and Modalities

Many of the core challenges presented by text games manifest themselves across domains

with different modalities and it may be possible to transfer progress between the domains.

Interactive narratives provide tractable, situated environments in which to explore highly

complex interactive grounded language learning without the complications that arise when

modeling physical motor control and vision—situations that voice assistants such as Siri or

Alexa might find themselves in when improvising responses. The abilities of agents that

I’ve developed here, especially the LIGHT-RL agent, would directly transfer to creating

policies for Alexa style chatbots to better engage with a user by generating language that is

more contextually relevant and better dependent on long term memory of the conversation.

Let’s now consider situations where we move away from text only situations. Take the

example of a slice-of-life walking simulator text game where the main quest is to complete a

recipe as given before. What happens when we encounter a similar situation with the added

modality of vision? Can we take the knowledge we’ve gained from learning a text-based

policy by completing the recipe in the original text game and use that to learn how to do

something similar with a visually embodied agent? ALFWorld (Shridhar et al. 2021) tests
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TextWorld Embodied

Welcome!

You are in the middle of the room. 
Looking around you, you see 
a diningtable, a stove, 
a microwave, and a cabinet. 

Your task is to: 
Put a pan on the diningtable. 

> goto the cabinet

You arrive at the cabinet. 
The cabinet is closed.

> open the cabinet

The cabinet is empty.

> goto the stove

You arrive at the stove. Near the 
stove, you see a pan, a pot, 
a bread loaf, a lettuce, 
and a winebottle.

> take the pan from the stove

You take the pan from the stove.

> goto the diningtable

You arrive at the diningtable.

> put the pan on the diningtable
 
You put the pan on the 
diningtable.
  

Figure 10.10: An aligned text game and visual environment from ALFWorld (Shridhar et
al. 2021).

this idea, it is a simulator that lets you first learn text-based policies in the “home” text-game

TextWorld (Côté et al. 2018), and then execute them in similarly themed scenarios from the

visual environment ALFRED (Shridhar et al. 2020). They find that commonsense priors—

regarding things like common object locations, affordances, and causality—learned while

playing text-games can be adapted to help create agents that generalize better in visually

grounded environments. This indicates that text games are suitable environments to train

agents to reason abstractly through text which can then be refined and adapted to specific

instances in an embodied setting.

Another such cross-domain transfer experiment was tested in the X-WLP dataset Tamari

et al. (2021), where they collected and buil a corpus of complex wet lab biochemistry pro-

tocols that are framed as a quest and could thus be executed via a text-game engine. The

annotations themselves are collected using a text-game-like interface, reducing overall data

collection cost. Prior works (Tamari et al. 2019) discuss automatically extracting these

protocols from raw lab texts and also training deep reinforcement learning agents on the
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Figure 10.11: A wet lab protocol as a text game from the X-WLP dataset (Tamari et al.
2021).

resulting text-game quest. The ability to automatically frame wet lab experiments in the

form of text game quests and leverage the latest text-game agent advances to interactively

train agents to perform them has implications for significantly improving procedural text

understanding (Levy et al. 2017) and in the reproducibility of scientific experiments (Mehr

et al. 2020).
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APPENDIX A

WORLD MODELING EXPERIMENTS

This Appendix first provides additional samples for the dataset for qualitative purposes and

then provides training details for the baseline models.

A.1 JerichoWorld Dataset

The games used in the Jericho suite and here are all open sourced freeware. The walk-

throughs required to create the oracle agents for the collection of data for the games were

drawn from various sources on the internet and errors were corrected manually. I provide

our data at https://github.com/JerichoWorld/JerichoWorld under an MIT license. I provide

3 samples drawn from different games in the full dataset to help the readers better under-

stand the diversity of text there.

Game: 905

Location:

Bedroom (in bed)

This bedroom is extremely spare, with dirty laundry scattered haphazardly all over the

floor. Cleaner clothing can be found in the dresser. A bathroom lies to the south,

while a door to the east leads to the living room.

On the end table are a telephone, a wallet and some keys.

The phone rings.

Observation: You take off the gold watch. The phone rings.

Inventory:

You are carrying:

some soiled clothing (being worn)

a gold watch

Prev Act: take off watch

Inventory Objects:

gold watch: Apparently it’s 9:07. The phone rings.
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soiled clothing: These clothes are a lost cause, sad to say no amount of laundering is

going to get these stains out.

Inventory Attributes:

watch: animate, equip

clothing: animate, equip

Surrounding Objects:

phone: An ordinary telephone, notable chiefly for being fifteen or twenty years old.

keys: House keys, car keys, they’re all on the same chain.

end table: A small end table, oak veneer over plywood.

living room: The living room lies to the east.

dirty dresser: Just a simple dresser.

laundry: Shirts, pants, the usual.

floor, east, south: You see nothing unexpected in that direction. The phone rings.

wallet: It’s a brown leather wallet.

door: Just a regular door.

Surrounding Attributes:

keys: animate, equip

wallet: animate, equip

Graph: [you, have, gold watch], [you, in, bed], [you, have, soiled clothing]

Valid Actions: take phone, get up, take off clothing, take off watch, take keys, close

door, take wallet, close door, put clothing down, put watch down, put clothing on

table, open wallet, put watch down, put clothing on phone, put watch on table, put

gold on phone, look under bed

Game: deephome

Location:

Secret Entrance

This is a rather dark and small room, having only two exits, back north the way you

came, from the ancestral homes of Tana, or through the heavily barred wooden door

before you that leads southwest and inward to the abandoned Deephome, abode of the

Dwarves in Telleen. It has been three hundred years since your people lived here.

The heavy door stands open, admitting you into Deephome.

Observation: As you touch the finely etched symbol, you hear a click and a whir. Then the

door swings open before you, opening into the abandoned city of Deephome. Your score

has just gone up by five points.

Inventory:

You are carrying:

King’s Order

a lantern (providing light)

Prev Act: push mountain

Inventory Objects:
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lantern: This is an old and trusty (not rusty) lantern that has been in your family for

centuries. It has yet to shut off at an inopportune moment. However, there is a

saying in your family..."That lantern is bound to go off at an inopportune time

sometime!"

order: The note reads: "Reclaimer: You have the esteemed duty to return to our Mountain

Kingdom of Deephome and prepare it for our return. There are several things a

Reclaimer must do: 1. Restore Power to the City 2. Restore Water to the city. 3.

Visit each location and make sure it is safe, a quick appraisal should be

sufficient. 4. Open the City Gates once more. 5. MOST IMPORTANT: Make sure the city

is SAFE to return to. May the Peace of Kraxis go with you King Derash of the

Mountain Tana, the year 782 SK."

Inventory Attributes:

lantern: equip

Surrounding Objects:

southwest: You see nothing special about the southwest wall.

house: It is the typical human house, maybe two stories. It is etched into the wood.

wooden door: This door is made of thick and sturdy wood. It has three symbols on it, a

tree, a house, and a mountain.

symbols: On the door there are pictures of a mountain, a tree, and a house.

tree: The tree symbol looks as if it were etched into the wood.

mountain: The mountain looks mighty, a high peak among the clouds. It is etched into

the wood.

Surrounding Attributes:

door: unlockable

symbols: unlock

Graph: [symbols, in, Secret Entrance], [wooden door, in, Secret Entrance], [ground, in,

Secret Entrance], [you, in, Secret Entrance], [house, in, Secret Entrance], [Kraxis,

in, Secret Entrance], [you, have, lantern], [mountain, in, Secret Entrance], [you,

have, "Kings Order"], [tree, in, Secret Entrance]

Valid Actions: say manaz, push mountain, close wooden, get in southwest, put light down,

put order down

Game: reverb

Location:

Behind the Counter

You are behind the counter at "Mr. Tasty’s Pizza Parlor". To the southwest is the rest

of the restaurant.

On the counter is a large pizza box (which is closed).

You can see a handwritten note here.

Observation: You put the large pizza box on the counter.
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Inventory: You are carrying nothing.

Prev Act: push large to counter

Inventory Objects:

Inventory Attributes:

Surrounding Objects:

southwest: You see nothing special about the southwest wall.

handwritten note: The note reads: "Stanley, Don’t forget to make your delivery to Mr.

Calzone, located at the San Doppleton Courthouse. You’re already on thin ice, kid.

One more screwup and you can expect to be looking for a new job." The note is

signed with the initials "RT". The paper is official "Mr. Tasty’s" stationery with

the name Bob "Tasty" Tasker and lots of balloons and smiley faces all over the

border. Isn’t that cute?

large pizza box: It’s a large, flat, greasy cardboard box. Hastily scrawled on the

outside is the word "Calzone". Which is weird, because it’s clearly a pizza.

counter: It’s a majorly boring counter which you’re unfortunately very familiar with.

Surrounding Attributes:

handwritten note: indoor, readable

large pizza box: indoor

counter: indoor

Graph: [metal file, in, large pizza], [you, in, Behind the Counter], [handwritten note, in

, Behind the Counter], [large pizza, in, large pizza box], [counter, in, Behind the

Counter], [large pizza box, in, counter]

Valid Actions: get up, take note, take large, examine note, undo large, push note to

southwest, push large to southwest, push note to counter, push large to counter

A.2 Baselines

The Rules and QA systems, are trained using hyperparameters and methodologies de-

scribed in their respective chapters.

Rules

The exact details regarding knowledge graph updates are found as follows. At every step,

given the current state and possible attributes as context. The rest of the triples are extracted

using OpenIE (Angeli et al. 2015).

• Linking the current room type (e.g. “Kitchen”, “Cellar”) to the items found in the
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room with the relation “has”, e.g. 〈kitchen, has, lamp〉

• All attribute information for each object is linked to the object with the relation “is”.

e.g. 〈egg, is, treasure〉

• Linking all inventory objects with relation “have” to the “you” node, e.g. 〈you, have, sword〉

• Linking rooms with directions based on the action taken to move between the rooms,

e.g. 〈Behind House, east of, Forest〉 after the action “go east” is taken to go from

behind the house to the forest

Question-Answering

The QA models are trained on the SQuAD 2.0 (Rajpurkar et al. 2018), the Jericho-QA

text game question answering dataset on the same set of training games as found in World-

former, and then on Worldformer itself by formatting our dataset in the style of questions

and answers when possible. Our dataset is formatted in the style of Jericho-QA by templat-

ing questions that ask about location, objects (including characters), and attributes. An ex-

ample of a Worldformer dataset example converted to Jericho-QA format is seen below—

though I would like to note that this removes much of the information present naturally

within our dataset. All other model architecture and hyperparameter details are as seen in

KG-A2C.

Game: reverb

Location:

Behind the Counter

You are behind the counter at "Mr. Tasty’s Pizza Parlor". To the southwest is the rest

of the restaurant.

On the counter is a large pizza box (which is closed).

You can see a handwritten note here.

Observation: You put the large pizza box on the counter.

Inventory: You are carrying nothing.

Question: Where am I located? Answer: Behind the Counter
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Question: What is here? Answer: large pizza box, handwritten note, southwest

Question: What do I have? Answer: nothing

Question: What attributes does handwritten note have? Answer: indoor, readable

Question: What attributes does southwest have? Answer: indoor

Question: What attributes does large pizza box have? Answer: indoor

Seq2Seq

For both tasks, models were trained until validation accuracy (picked to be a random 10%

subset of the training data) did not improve for 5 epochs or 72 wall clock hours on a

machine with 4 Nvidia GeForce RTX 2080 GPUs, three times with three random seeds.

All models decode using beam search with a beam width of 15 at test time until the end-

of-sequence tag is reached. The size of the decoding vocabulary for the action prediction

task is 11056 and for the graph prediction task is 6985. Hyperparameters were not tuned

and were taken from BART (Lewis et al. 2020).

Table A.1: Hyperparameters used to train the Seq2Seq model. It has a total of 232 million
trainable parameters.

Hyperparameter type Value
Dictionary Tokenizer Byte-pair encoding
Num. Encoder layers 6
Num. Decoder layers 6
Num. encoder and decoder attention heads 8
Feedforward network hidden size 4096
Input length 1024
Embedding size 768
Batch size 16
Dropout ratio 0.1
Gradient clip 1.0
Optimizer Adam
Learning rate 10× 10−4

A.3 Worldformer

All baseline models have hyperparameters taken from their respective works and from the

JerichoWorld benchmarks. They are trained accordingly, with the exception of GATA-

World. This model uses an architecture identical to that of the Worldformer but is trained
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Table A.2: Hyperparameters used to train the Worldformer. It has a total of ≈ 380 million
trainable parameters. The triple tokenizer splits on individual parts of 〈s, r, o〉.

Hyperparameter type Value
Text encoder

Dictionary Tokenizer Sentence piece
Num. layers 6
Num. attention heads 6
Feedforward network hidden size 3072
Input length 1024
Embedding size 768

Graph encoder
Dictionary Tokenizer Triple tokenizer
Num. layers 6
Num. attention heads 6
Feedforward network hidden size 3072
Input length 1024
Embedding size 768

Aggregator
Num. layers 2
Num. attention heads 2
Feedforward network hidden size 4096
Input length 2048
Embedding size 768

Action Decoder
Dictionary Tokenizer White space tokenizer
Num. layers 6
Num. attention heads 6
Feedforward network hidden size 3072
Input length 1024
Embedding size 768

Graph Decoder
Dictionary Tokenizer Triple tokenizer
Num. layers 6
Num. attention heads 6
Feedforward network hidden size 3072
Input length 1024
Embedding size 768

Common
Activation gelu
Batch size 16
Dropout ratio 0.1
Gradient clip 1.0
Optimizer Adam
Learning rate 3× 10−4

to predict add/del rules as described earlier—i.e. it is trained single-task and has only a

graph decoder and no action decoder. The hyperparameters and training methodology for

this model match those of the Worldformer described below.

Following JerichoWorld models were trained until validation accuracy (picked to be

a random 10% subset of the training data) did not improve for 5 epochs or 96 wall clock

hours on a machine with 4 Nvidia GeForce RTX 2080 GPUs, three times with three random

seeds. All models decode using beam search with a beam width of 15 at test time until the

end-of-sequence tag is reached. The size of the decoding vocabulary for the action decoder
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is 11056 and for the graph decoder is 7002. Hyperparameters were not tuned and were

taken from other transformer-based text game works (Adhikari et al. 2020; Ammanabrolu

et al. 2020d). Hyperparameter settings for ablations do not vary from the full Worldformer.

Encoders have an architecture similar to BERT (Devlin et al. 2019) and decoders one

similar to GPT-2 (Radford et al. 2019)—the rest of the hyperparameters are provided in

Table A.2.

A.3.1 Example Output Graphs and Actions

Here, we provide 3 examples of graphs and actions generated from the randomly drawn

test example instances shown in JerichoWorld to provide a qualitative comparison across

the different models.

Game: ludicorp

State:

Location: Meeting Area

A door to the south leads into the garden. A water cooler sits invitingly in

the corner. More doors lead east and west. You can see a Coil of wire here.

Observation: Dropped.

Inventory: You are carrying:

a Dragon Statue

some Plant Pots

a Long Ladder

a Gun

Graph: ["Coil of wire", "in", "Meeting Area"],

["you", "have", "Plant Pots"],

["Water Cooler", "in", "Meeting Area"],

["you", "have", "Dragon Statue"],

["you", "have", "Long Ladder"],

["you", "in", "Meeting Area"],

["you", "have", "Gun"]

Valid Actions: take wire, east, west, south, put dragon down, put pots down, put gun

down, put ladder down

Act: take wire

Next State:

Location: Meeting Area

A door to the south leads into the garden. A water cooler sits invitingly in

the corner. More doors lead east and west.
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Observation: Taken.

Inventory: You are carrying:

a Coil of wire

a Dragon Statue

some Plant Pots

a Long Ladder

a Gun

Graph: ["you", "have", "Coil of wire"],

["you", "have", "Plant Pots"],

["Water Cooler", "in", "Meeting Area"],

["you", "have", "Dragon Statue"],

["you", "have", "Long Ladder"],

["you", "in", "Meeting Area"],

["you", "have", "Gun"]

Valid Actions: put wire down, east, west, south, put dragon down, put pots down, put

gun down, put ladder down

Predicted Next State Graphs:

Rules: ["door to the", "in", "South"],

["more doors", "in", "east and west"]

["leads to the", "in", "garden"],

["you are carrying", "have", "some Plant Pots"],

["a water cooler sits", "in", "corner"],

["you are carrying", "have", "Dragon Statue"],

["you are carrying", "have", "a Long Ladder"],

["you", "in", "Meeting Area"],

["you are carrying", "have", "a Gun"]

QA: ["you", "have", "Coil of wire"],

["door", "in", "South"],

["doors", "in", "east and west"]

["you", "have", "some Plant Pots"],

["water cooler", "in", "corner"],

["you", "have", "Dragon Statue"],

["you", "have", "a Long Ladder a Gun"],

["you", "in", "Meeting Area"]

Seq2Seq: ["you", "have", "Pots"],

["you", "in", "Statue"],

["you", "have", "Ladder Gun"],

["you", "in", "Meeting Area"]

GATA-W: ["you", "in", "Coil of wire"],

["you", "have", "Plant Pots"],

["Water Cooler", "in", "Meeting Area"],
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["you", "have", "Dragon Statue"],

["you", "in", "Statue"],

["you", "have", "Long Ladder"],

["you", "in", "Meeting Area"],

["you", "have", "Gun"]

Worldformer: ["you", "have", "Coil of wire"],

["you", "have", "Plant Pots"],

["Water Cooler", "in", "Meeting Area"],

["you", "in", "Dragon Statue"],

["you", "have", "Long Ladder"],

["you", "in", "Meeting Area"],

["you", "have", "Gun"]

Predicted Next State Valid Actions:

Seq2Seq Actions: east, west, south, north, pick coil up, pick statue up, put ladder gun

down, put meeting area down, put pots down

CALM Actions: northwest, up, take plant, put plant in cooler, take water, take fish,

south, wait, take all, north, take dragon, take cooler, southeast, take dragon

statue, get all, east, west, take gun, northeast, southwest

Worldformer Actions: east, west, south, north, put coil down, pick statue up, put

ladder down, put pots down, put gun down

==================

Game: pentari

State:

Location: Armory

Many death-dealing weapons of every type were stored here. Several tall racks

probably held spears while shorter ones mounted against the wall stored

various kinds of swords. Other wall mounts, also empty, give you no idea

what sort of weapons may have been held by them. A large archway north is

partially blocked by collapsed stones and rubble. You can see a jewel

encrusted dagger here.

Observation: Armory

Many death-dealing weapons of every type were stored here. Several tall racks

probably held spears while shorter ones mounted against the wall stored

various kinds of swords. Other wall mounts, also empty, give you no idea

what sort of weapons may have been held by them. A large archway north is

partially blocked by collapsed stones and rubble. You can see a jewel

encrusted dagger here.

Inventory: You are carrying nothing.

Graph: ["jewel encrusted dagger", "in", "Armory" ],
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["Armory", "west", "Main Hall"],

["you", "in", "Armory"]

Valid Actions: take other, east, north

Act: east

Next State:

Location: Main Hall

This once majestic room was where visitors would come to relax and meet with

the formal lord of the castle in a somewhat informal atmosphere. Several

large comfortable couches are scattered about, dusty and altogether squalid

. Many large tapestries still hang on the walls but are horribly faded from

age. Large open archways lead east and west while a huge fireplace

dominates the center of the room against the northern wall.

Observation: Main Hall

This once majestic room was where visitors would come to relax and meet with

the formal lord of the castle in a somewhat informal atmosphere. Several

large comfortable couches are scattered about, dusty and altogether

squalid. Many large tapestries still hang on the walls but are horribly

faded from age. Large open archways lead east and west while a huge

fireplace dominates the center of the room against the northern wall.

Inventory: You are carrying nothing.

Graph: ["couch", "in", "Main Hall"],

["jewel encrusted dagger", "in", "Armory" ],

["you", "in", "Main Hall"],

["Main Hall", "east", "Armory"],

["tapestry", "in","Main Hall"]

Valid Actions: east, west, south, north

Predicted Next State Graphs:

Rules: ["Several large comfortable couches", "in", "Main Hall"],

["many large tapestries", "in", "Main Hall"],

["many large tapestries", "is", "age"],

["huge fireplace dominates", "in", "center of room against northern wall"],

["death dealing weapons", "in", "Armory"],

["visitors", "in", "to relax"],

["archway north", "is", "blocked"],

["archway north", "in", "collapsed stones"],

["spears", "in", "several tall racks"],

["you", "in", "Armory"],

["you", "in", "see encrusted dagger"],

["you are carrying", "have", "nothing"],

["Main Hall", "east", "Armory"]

QA: ["couches", "in", "Main Hall"],
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["tapestries", "in", "Main Hall"],

["tapestries", "is", "faded"],

["Main Hall", "east", "Armory"],

["fireplace", "in", "center of room"],

["weapons", "in", "Armory"],

["visitors", "in", "Armory"],

["spears", "is", "tall"],

["you", "in", "Armory"],

["you", "have", "nothing"]

Seq2Seq: ["couch", "in", "Main Hall"],

["jewel", "in", "Armory" ],

["you", "in", "Main Hall"],

["large", "in","Main Hall"]

GATA-W: ["couch", "in", "Main Hall"],

["jewel encrusted dagger", "in", "Armory" ],

["you", "in", "Main Hall"],

["tapestry", "in","Main Hall"]

Worldformer: ["couch", "in", "Main Hall"],

["dagger", "in", "Armory" ],

["you", "in", "Main Hall"],

["Main Hall", "east", "Armory"],

["faded", "in", "Main Hall"]

Predicted Next State Valid Actions:

Seq2Seq Actions: east, west, south, north, take jewel, take large, take armory, put

couch down

CALM Actions: get dagger, northwest, out, up, down, exits, search tapestries, close

door, south, search fireplace, enter fireplace, open fireplace, north, in,

southeast, east, west, take dagger, northeast, southwest

Worldformer Actions: east, west, south, north, take jewel, take large, examine large,

examine couch

==================

Game: temple

State:

Location: Dead End

This part of the town is radically different from the parts closer to the tower

. The roads are narrower and the paving is irregular, sometimes stone slabs

and sometimes cobblestones. The buildings are tall but less well kept than

before. There are still no windows or doors, but there are a few overhead

bridges from house to house. The road ends here and the only way out is to
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the north. You can also see a wrought iron key and Charles Bristow here.

Observation: The cat jumps aside to avoid the projectile, but moves a bit too far. It

falls down, but like most cats it escapes unhurt. The cat runs off to the north.

The wrought iron key falls down again and hits one of the stone slabs. There is a

hollow sound, much like there was some cavity below the slab. ’I used to have a cat

, you know’ Charles remarks.

Inventory: You are carrying:

a vial labelled Mukhtar

the Caelestae Horriblis

two vials

a yellow paper

a hideous statue

Graph: ["stone slab", "in", "Dead End"],

["slab", "is", "animate"],

["Charles’ clothes", "in", "Charles Bristow"],

["clothes", "is", "animate"],

["clothes", "is", "equip"],

["you", "have", "mysterious vial"],

["you", "have", "vial labelled Mukhtar"],

["overhead bridge", "in", "Dead End"],

["you", "have", "Caelestae Horriblis"],

["you", "have", "yellow paper"],

["yellow paper", "is", "animate"],

["you", "have", "hideous statue"],

["hideous statue", "is", "animate"],

["sky", "in", "Dead End"],

["elliptcal building", "in", "Dead End"],

["you", "in", "Dead End"],

["entrance", "in", "Dead End"],

["Charles Bristow", "in", "Dead End"],

["wrought iron key", "in", "Dead End"]

Valid Actions: take wrought, take paving, north, put mysterious down, put caelestae

down, put paper down, put statue down, put mukhtar down, drop wrought against

bridge

Act: put paper down

Next State:

Location: Dead End

This part of the town is radically different from the parts closer to the tower

. The roads are narrower and the paving is irregular, sometimes stone slabs

and sometimes cobblestones. The buildings are tall but less well kept than

before. There are still no windows or doors, but there are a few overhead
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bridges from house to house. The road ends here and the only way out is to

the north. You can also see a yellow paper, a wrought iron key and Charles

Bristow here.

Observation: Dropped.

Inventory: You are carrying:

a vial labelled Mukhtar

the Caelestae Horriblis

two vials

a hideous statue

Graph: ["yellow paper", "in", "Dead End"],

["yellow paper", "is", "animate"],

["stone slab", "in", "Dead End"],

["stone slab", "is", "animate"],

["Charles’ clothes", "in", "Charles Bristow"],

["clothes", "is", "animate"],

["clothes", "is", "equip"],

["you", "have", "mysterious vial"],

["you", "have", "vial labelled Mukhtar"],

["overhead bridge", "in", "Dead End"],

["you", "have", "Caelestae Horriblis"],

["you", "have", "hideous statue"],

["hideous statue", "is", "animate"],

["sky", "in", "Dead End"],

["elliptcal building", "in", "Dead End"],

["you", "in", "Dead End"],

["entrance", "in", "Dead End"],

["Charles Bristow", "in", "Dead End"],

["wrought iron key", "in", "Dead End"]

Valid Actions: take wrought, take paving, north, put mysterious down, put caelestae

down, take all, put statue down, put mukhtar down, drop wrought against bridge

Predicted Next State Graphs:

Rules:["you", "in", "Dead End"],

["Dead End", "is", "radically different from the parts closer to the tower"],

["roads", "is", "narrower"],

["the paving", "is", "irregular"],

["the buildings", "is", "less well kept"],

["only way", "is", "north"],

["you can see", "in", "yellow paper"],

["you can see", "in", "a wrought iron key and Charles Bristow here"],

["you are carrying", "have", "a vial labelled Mukhtar"],

["you are carrying", "have", "the Caelestae Horriblis two vials"],
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["you are carrying", "have", "a hideous statue"]

QA: ["you", "in", "Dead End"],

["Dead End", "is", "animate"],

["road", "is", "animate"],

["paving", "is", "animate"],

["building", "is", "animate"],

["yellow paper", "in", "Dead End"],

["paper", "is", "animate"],

["key", "in", "Dead End"],

["key", "is", "animate"],

["Charles Bristow", "in", "Dead End"],

["Charles Bristow", "is", "animate"],

["you", "have", "a vial"],

["a vial", "is", "animate"],

["you", "have", "Caelestae Horriblis"],

["Caelestae Horriblis", "is", "animate"],

["you", "have", "two vials"],

["you", "have", "a hideous statue"]

["a hideous statue", "is", "animate"]

Seq2Seq: ["you", "in", "Dead End"],

["Dead End", "is", "animate"],

["key", "in", "Dead End"],

["key", "is", "animate"],

["Charles Bristow", "in", "Dead End"],

["Charles Bristow", "is", "animate"],

["you", "have", "vial"],

["you", "have", "two vials"],

["you", "in", "statue"]

GATA-W: ["yellow paper", "in", "Dead End"],

["stone slab", "in", "Dead End"],

["stone slab", "is", "animate"],

["Charles’ clothes", "in", "Charles Bristow"],

["clothes", "is", "animate"],

["clothes", "is", "equip"],

["you", "have", "mysterious vial"],

["you", "have", "vial labelled Mukhtar"],

["overhead bridge", "in", "Dead End"],

["you", "in", "Caelestae Horriblis"],

["sky", "in", "Dead End"],

["elliptcal building", "in", "Dead End"],

["you", "in", "Dead End"],
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["entrance", "in", "Dead End"],

["Charles Bristow", "in", "Dead End"],

["wrought iron key", "in", "Dead End"]

Worldformer: ["yellow paper", "in", "Dead End"],

["yellow paper", "is", "animate"],

["stone slab", "in", "Dead End"],

["stone slab", "is", "animate"],

["Charles’ clothes", "in", "Charles Bristow"],

["clothes", "is", "animate"],

["clothes", "is", "equip"],

["you", "have", "vial"],

["bridge", "in", "Dead End"],

["you", "have", "Caelestae Horriblis"],

["you", "have", "hideous statue"],

["hideous statue", "is", "animate"],

["sky", "in", "Dead End"],

["building", "in", "Dead End"],

["you", "in", "Dead End"],

["entrance", "in", "Dead End"],

["Charles Bristow", "in", "Dead End"],

["wrought iron key", "in", "Dead End"]

Predicted Next State Valid Actions:

Seq2Seq Actions: east, west, south, north, drop vial, take key, take statue, take

charles bristow

CALM Actions: put paper down, drop vial, take key, up, down, put paper in cavity, put

yellow paper down, take vial, drop key, drop all, open vial, south, get key, put

yellow paper in cavity, take all, put vial in cavity, north, east, west, give vial

to cat

Worldformer Actions: south, east, west, north, take building, take entrance, drop vial,

take charles bristow, take paper, drop vials, take sky, drop key, take statue,

take bridge

Here the first 50 steps of the transcript of an agent following a random valid action

policy in Zork1 is provided along with the predicted knowledge graph at each step as a

qualitative measure of compounding error of such models.

==========STEP 1==========

Observation:

West of House You are standing in an open field west of a white house, with a boarded

front door. There is a small mailbox here.

You are emptyhanded.
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Copyright (c) 1981, 1982, 1983 Infocom, Inc. All rights reserved. ORK is a registered

trademark of Infocom, Inc. Revision 88 / Serial number 8402 West of House You are

standing in an open field west of a white house, with a boarded front door. There is a

small mailbox here.

look

Action: north

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’mailbox’, ’is’, ’animate’), (’mailbox’, ’in’, ’west’), (’you’, ’is’, ’

you’), (’you’, ’in’, ’west’)]

==========STEP 2==========

Observation:

North of House You are facing the north side of a white house. There is no door here, and

all the windows are boarded up. To the north a narrow path winds through the trees.

You are emptyhanded.

North of House You are facing the north side of a white house. There is no door here, and

all the windows are boarded up. To the north a narrow path winds through the trees.

north

Action: west

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’mailbox’, ’is’, ’animate’), (’mailbox’, ’in’, ’west’), (’you’, ’is’, ’

you’), (’you’, ’in’, ’north_of_house’), (’north_of_house’, ’north’, ’west’), (’windows

’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’path’, ’is’, ’animate’), (’path’, ’in

’, ’north_of_house’), (’north’, ’is’, ’animate’), (’north’, ’in’, ’north_of_house’)]

==========STEP 3==========

Observation:

West of House You are standing in an open field west of a white house, with a boarded

front door. There is a small mailbox here.

You are emptyhanded.

West of House There is a small mailbox here.

west

Action: north

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’in’, ’west’), (’north_of_house

’, ’north’, ’west’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’)

, (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’path’, ’is’, ’

animate’), (’path’, ’in’, ’north_of_house’), (’north’, ’is’, ’animate’), (’north’, ’in
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’, ’north_of_house’)]

==========STEP 4==========

Observation:

North of House You are facing the north side of a white house. There is no door here, and

all the windows are boarded up. To the north a narrow path winds through the trees.

You are emptyhanded.

North of House

north

Action: north

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’in’, ’north_of_house’), (’

north_of_house’, ’north’, ’west’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’

is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’path

’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’), (’north’, ’is’, ’animate’), (’

north’, ’in’, ’north_of_house’)]

==========STEP 5==========

Observation:

Forest Path This is a path winding through a dimly lit forest. The path heads northsouth

here. One particularly large tree with some low branches stands at the edge of the

path.

You are emptyhanded.

Forest Path This is a path winding through a dimly lit forest. The path heads northsouth

here. One particularly large tree with some low branches stands at the edge of the

path. You hear in the distance the chirping of a song bird.

north

Action: east

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’in’, ’forest_path’), (’

north_of_house’, ’north’, ’west’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’

is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’path

’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’), (’north’, ’is’, ’animate’), (’

north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’

animate’), (’forest_path’, ’north’, ’north_of_house’), (’tree’, ’in’, ’forest_path’),

(’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’)]

==========STEP 6==========

Observation:

Forest This is a dimly lit forest, with large trees all around.
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You are emptyhanded.

Forest This is a dimly lit forest, with large trees all around.

east

Action: east

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’in’, ’forest’), (’

north_of_house’, ’north’, ’west’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’

is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’

trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’),

(’north’, ’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’

forest_path’), (’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’,

’north’, ’north_of_house’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’),

(’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate

’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’forest’)]

==========STEP 7==========

Observation:

Forest The forest thins out, revealing impassable mountains.

You are emptyhanded.

Forest The forest thins out, revealing impassable mountains.

east

Action: up

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’north_of_house’, ’north’, ’west’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’north’, ’is’, ’animate’), (’north’,

’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’),

(’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’tree’, ’in’,

’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’,

’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’

forest’, ’in’, ’forest’), (’mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest

’)]

==========STEP 8==========

Observation:

Forest The forest thins out, revealing impassable mountains.

You are emptyhanded.

The mountains are impassable.
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up

Action: west

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’north_of_house’, ’north’, ’west’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’north’, ’is’, ’animate’), (’north’,

’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’),

(’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’tree’, ’in’,

’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’,

’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’

forest’, ’up’, ’forest’), (’mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest

’)]

==========STEP 9==========

Observation:

Forest This is a dimly lit forest, with large trees all around.

You are emptyhanded.

Forest

west

Action: west

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’north_of_house’, ’north’, ’west’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’north’, ’is’, ’animate’), (’north’,

’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’),

(’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’tree’, ’in’,

’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’,

’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’

forest’, ’in’, ’forest’), (’mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest

’)]

==========STEP 10==========

Observation:

Forest Path This is a path winding through a dimly lit forest. The path heads northsouth

here. One particularly large tree with some low branches stands at the edge of the

path.

You are emptyhanded.
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Forest Path

west

Action: north

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’in’, ’forest_path’), (’

north_of_house’, ’north’, ’west’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’

is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’

trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’),

(’north’, ’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’

forest_path’), (’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’,

’north’, ’north_of_house’), (’forest_path’, ’west’, ’forest’), (’tree’, ’in’, ’

forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’,

’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’

forest’, ’in’, ’forest’), (’mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest

’)]

==========STEP 11==========

Observation:

Clearing You are in a clearing, with a forest surrounding you on all sides. A path leads

south. On the ground is a pile of leaves.

You are emptyhanded.

Clearing You are in a clearing, with a forest surrounding you on all sides. A path leads

south. On the ground is a pile of leaves.

north

Action: south

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’in’, ’clearing’), (’

north_of_house’, ’north’, ’west’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’

is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’

trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’),

(’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’north’, ’in’, ’

north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’), (’large

’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’west

’, ’forest’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is

’, ’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’,

’east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’in’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’)]
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==========STEP 12==========

Observation:

Forest Path This is a path winding through a dimly lit forest. The path heads northsouth

here. One particularly large tree with some low branches stands at the edge of the

path.

You are emptyhanded.

Forest Path

south

Action: south

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’in’, ’forest_path’), (’

north_of_house’, ’north’, ’west’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’

is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’

trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’),

(’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’north’, ’in’, ’

north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’), (’large

’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’west

’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’), (’

tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’),

(’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’

forest’), (’forest’, ’in’, ’clearing’), (’mountains’, ’is’, ’animate’), (’mountains’,

’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’pile’, ’in’, ’clearing’), (’

pile’, ’is’, ’animate’)]

==========STEP 13==========

Observation:

North of House You are facing the north side of a white house. There is no door here, and

all the windows are boarded up. To the north a narrow path winds through the trees.

You are emptyhanded.

North of House

south

Action: north

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’in’, ’north_of_house’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,
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’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),

(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’

north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’in’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’)]

==========STEP 14==========

Observation:

Forest Path This is a path winding through a dimly lit forest. The path heads northsouth

here. One particularly large tree with some low branches stands at the edge of the

path.

You are emptyhanded.

Forest Path

north

Action: north

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’in’, ’forest_path’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,

’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),

(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’

north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’in’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’)]

==========STEP 15==========

Observation:

Clearing You are in a clearing, with a forest surrounding you on all sides. A path leads

south. On the ground is a pile of leaves.

You are emptyhanded.

Clearing On the ground is a pile of leaves.

north
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Action: west

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’in’, ’clearing’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,

’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),

(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’

north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’in’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’,

’animate’), (’leaves’, ’in’, ’clearing’)]

==========STEP 16==========

Observation:

Forest This is a forest, with trees in all directions. To the east, there appears to be

sunlight.

You are emptyhanded.

Forest This is a forest, with trees in all directions. To the east, there appears to be

sunlight.

west

Action: go around forest

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’in’, ’forest’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,

’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),

(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’

north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’
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forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’,

’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’

forest’)]

==========STEP 17==========

Observation:

Forest This is a dimly lit forest, with large trees all around.

You are emptyhanded.

Forest

go around forest

Action: west

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’north_of_house’, ’north’, ’west’), (’

north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’north_of_house’), (’

windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’

animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’

north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’north’, ’

in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’), (’

large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’

west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’),

(’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’)

, (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’

forest’), (’forest’, ’west’, ’clearing’), (’mountains’, ’is’, ’animate’), (’mountains

’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’pile’, ’in’, ’clearing’),

(’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’clearing’),

(’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’)]

==========STEP 18==========

Observation:

Forest Path This is a path winding through a dimly lit forest. The path heads northsouth

here. One particularly large tree with some low branches stands at the edge of the

path.

You are emptyhanded.

Forest Path

west

Action: up

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’in’, ’forest_path’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’
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windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,

’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),

(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’

north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’,

’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’

forest’)]

==========STEP 19==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest. In the birds nest is a large egg encrusted with precious jewels,

apparently scavenged by a childless songbird. The egg is covered with fine gold inlay,

and ornamented in lapis lazuli and motherofpearl. Unlike most eggs, this one is

hinged and closed with a delicate looking clasp. The egg appears extremely fragile.

You are emptyhanded.

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest. In the birds nest is a large egg encrusted with precious jewels,

apparently scavenged by a childless songbird. The egg is covered with fine gold inlay,

and ornamented in lapis lazuli and motherofpearl. Unlike most eggs, this one is

hinged and closed with a delicate looking clasp. The egg appears extremely fragile.

up

Action: take egg

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’north_of_house’, ’north’, ’west’), (’

north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’north_of_house’), (’

windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’

animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’

north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’north’, ’

in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’), (’

large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’

west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’),
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(’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’)

, (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’

forest’), (’forest’, ’west’, ’clearing’), (’mountains’, ’is’, ’animate’), (’mountains

’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’pile’, ’in’, ’clearing’),

(’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’clearing’),

(’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’egg’, ’is’, ’animate’), (’nest

’, ’is’, ’animate’)]

==========STEP 20==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest. You hear in the distance the chirping of a song bird.

You are carrying A jewelencrusted egg You hear in the distance the chirping of a song bird

.

Taken.

take egg

Action: west

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’jewel’), (’you’, ’have’, ’encrusted’), (’north_of_house’, ’north’, ’west’), (’

north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’north_of_house’), (’

windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’

animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’

north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’north’, ’

in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’), (’

large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’

west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’),

(’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’)

, (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’

forest’), (’forest’, ’west’, ’clearing’), (’mountains’, ’is’, ’animate’), (’mountains

’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’pile’, ’in’, ’clearing’),

(’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’clearing’),

(’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’egg’, ’is’, ’animate’), (’nest

’, ’is’, ’animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’)]

==========STEP 21==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest.
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You are carrying A jewelencrusted egg

You cant go that way. You hear in the distance the chirping of a song bird.

west

Action: throw trees at window

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’jewel’), (’you’, ’have’, ’encrusted’), (’north_of_house’, ’north’, ’west’), (’

north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’north_of_house’), (’

windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’

animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’

north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’north’, ’

in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’), (’

large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’

west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’),

(’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’)

, (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’

forest’), (’forest’, ’west’, ’clearing’), (’mountains’, ’is’, ’animate’), (’mountains

’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’pile’, ’in’, ’clearing’),

(’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’clearing’),

(’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’egg’, ’is’, ’animate’), (’nest

’, ’is’, ’animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’)]

==========STEP 22==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest.

You are carrying A jewelencrusted egg

You dont have the forest.

throw trees at window

Action: throw forest at forest

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’jewel’), (’you’, ’have’, ’encrusted’), (’north_of_house’, ’north’, ’west’), (’

north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’north_of_house’), (’

windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’

animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’

north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’north’, ’
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in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’), (’

large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’

west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’),

(’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’)

, (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’

forest’), (’forest’, ’west’, ’clearing’), (’mountains’, ’is’, ’animate’), (’mountains

’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’pile’, ’in’, ’clearing’),

(’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’clearing’),

(’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’egg’, ’is’, ’animate’), (’nest

’, ’is’, ’animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’)]

==========STEP 23==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest.

You are carrying A jewelencrusted egg

You dont have the forest.

throw forest at forest

Action: throw egg at nest

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’jewel’), (’you’, ’have’, ’encrusted’), (’north_of_house’, ’north’, ’west’), (’

north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’north_of_house’), (’

windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’

animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’

north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’north’, ’

in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’), (’

large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’

west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’),

(’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’)

, (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’

forest’), (’forest’, ’west’, ’clearing’), (’mountains’, ’is’, ’animate’), (’mountains

’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’pile’, ’in’, ’clearing’),

(’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’clearing’),

(’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’egg’, ’is’, ’animate’), (’nest

’, ’is’, ’animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’)]

==========STEP 24==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The
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nearest branch above you is above your reach. Beside you on the branch is a small

birds nest. There is a somewhat ruined egg here. There is a golden clockwork canary

nestled in the egg. It seems to have recently had a bad experience. The mountings for

its jewellike eyes are empty, and its silver beak is crumpled. Through a cracked

crystal window below its left wing you can see the remains of intricate machinery. It

is not clear what result winding it would have, as the mainspring seems sprung.

You are emptyhanded.

Your rather indelicate handling of the egg has caused it some damage, although you have

succeeded in opening it. There is a golden clockwork canary nestled in the egg. It

seems to have recently had a bad experience. The mountings for its jewellike eyes are

empty, and its silver beak is crumpled. Through a cracked crystal window below its

left wing you can see the remains of intricate machinery. It is not clear what result

winding it would have, as the mainspring seems sprung.

throw egg at nest

Action: south

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’

forest_path’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’

trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’)

, (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’

clearing’), (’north’, ’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’

in’, ’forest_path’), (’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’

forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’west’, ’forest’), (’

forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’

animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is

’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest

’, ’west’, ’clearing’), (’mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’),

(’clearing’, ’north’, ’forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’

animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’

animate’), (’east’, ’in’, ’forest’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate

’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’

animate’), (’window’, ’is’, ’animate’)]

==========STEP 25==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest. There is a somewhat ruined egg here. There is a golden clockwork canary

nestled in the egg. It seems to have recently had a bad experience. The mountings for
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its jewellike eyes are empty, and its silver beak is crumpled. Through a cracked

crystal window below its left wing you can see the remains of intricate machinery. It

is not clear what result winding it would have, as the mainspring seems sprung.

You are emptyhanded.

You cant go that way.

south

Action: take egg

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’

forest_path’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’

trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’)

, (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’

clearing’), (’north’, ’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’

in’, ’forest_path’), (’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’

forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’west’, ’forest’), (’

forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’

animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is

’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest

’, ’west’, ’clearing’), (’mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’),

(’clearing’, ’north’, ’forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’

animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’

animate’), (’east’, ’in’, ’forest’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate

’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’

animate’), (’window’, ’is’, ’animate’)]

==========STEP 26==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest.

You are carrying A broken jewelencrusted egg The broken jewelencrusted egg contains A

broken clockwork canary

Taken.

take egg

Action: throw egg at nest

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have
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’, ’encrusted’), (’you’, ’have’, ’clockwork’), (’you’, ’have’, ’broken’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,

’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),

(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’

north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’,

’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’

forest’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’, ’

animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’animate’), (’window’, ’is

’, ’animate’), (’broken’, ’is’, ’animate’), (’clockwork’, ’is’, ’animate’)]

==========STEP 27==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest. There is a somewhat ruined egg here. There is a golden clockwork canary

nestled in the egg. It seems to have recently had a bad experience. The mountings for

its jewellike eyes are empty, and its silver beak is crumpled. Through a cracked

crystal window below its left wing you can see the remains of intricate machinery. It

is not clear what result winding it would have, as the mainspring seems sprung.

You are emptyhanded.

Thrown.

throw egg at nest

Action: open egg

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’clockwork’), (’you’, ’have’, ’broken’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,

’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),

(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’
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north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’,

’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’

forest’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’, ’

animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’animate’), (’window’, ’is

’, ’animate’), (’broken’, ’is’, ’animate’), (’clockwork’, ’is’, ’animate’)]

==========STEP 28==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest. There is a somewhat ruined egg here. There is a golden clockwork canary

nestled in the egg. It seems to have recently had a bad experience. The mountings for

its jewellike eyes are empty, and its silver beak is crumpled. Through a cracked

crystal window below its left wing you can see the remains of intricate machinery. It

is not clear what result winding it would have, as the mainspring seems sprung. You

hear in the distance the chirping of a song bird.

You are emptyhanded. You hear in the distance the chirping of a song bird.

It is already open.

open egg

Action: north

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’clockwork’), (’you’, ’have’, ’broken’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,

’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),

(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’

north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’,
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’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’

forest’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’, ’

animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’animate’), (’window’, ’is

’, ’animate’), (’broken’, ’is’, ’animate’), (’clockwork’, ’is’, ’animate’)]

==========STEP 29==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest. There is a somewhat ruined egg here. There is a golden clockwork canary

nestled in the egg. It seems to have recently had a bad experience. The mountings for

its jewellike eyes are empty, and its silver beak is crumpled. Through a cracked

crystal window below its left wing you can see the remains of intricate machinery. It

is not clear what result winding it would have, as the mainspring seems sprung.

You are emptyhanded.

You cant go that way. You hear in the distance the chirping of a song bird.

north

Action: close nest

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’clockwork’), (’you’, ’have’, ’broken’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,

’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),

(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’

north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’,

’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’

forest’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’, ’

animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’animate’), (’window’, ’is

’, ’animate’), (’broken’, ’is’, ’animate’), (’clockwork’, ’is’, ’animate’), (’

clockwork_canary’, ’is’, ’animate’)]

==========STEP 30==========

Observation:
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Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest. There is a somewhat ruined egg here. There is a golden clockwork canary

nestled in the egg. It seems to have recently had a bad experience. The mountings for

its jewellike eyes are empty, and its silver beak is crumpled. Through a cracked

crystal window below its left wing you can see the remains of intricate machinery. It

is not clear what result winding it would have, as the mainspring seems sprung.

You are emptyhanded.

Closed.

close nest

Action: east

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’clockwork’), (’you’, ’have’, ’broken’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,

’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),

(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’

north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’,

’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’

forest’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’, ’

animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’animate’), (’window’, ’is

’, ’animate’), (’broken’, ’is’, ’animate’), (’clockwork’, ’is’, ’animate’), (’

clockwork_canary’, ’is’, ’animate’)]

==========STEP 31==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest. There is a somewhat ruined egg here. There is a golden clockwork canary

nestled in the egg. It seems to have recently had a bad experience. The mountings for

its jewellike eyes are empty, and its silver beak is crumpled. Through a cracked

crystal window below its left wing you can see the remains of intricate machinery. It
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is not clear what result winding it would have, as the mainspring seems sprung.

You are emptyhanded.

You cant go that way.

east

Action: north

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’clockwork’), (’you’, ’have’, ’broken’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,

’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),

(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’

north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’,

’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’

forest’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’, ’

animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’animate’), (’window’, ’is

’, ’animate’), (’broken’, ’is’, ’animate’), (’clockwork’, ’is’, ’animate’), (’

clockwork_canary’, ’is’, ’animate’)]

==========STEP 32==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest. There is a somewhat ruined egg here. There is a golden clockwork canary

nestled in the egg. It seems to have recently had a bad experience. The mountings for

its jewellike eyes are empty, and its silver beak is crumpled. Through a cracked

crystal window below its left wing you can see the remains of intricate machinery. It

is not clear what result winding it would have, as the mainspring seems sprung.

You are emptyhanded.

You cant go that way.

north

Action: take egg
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[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’clockwork’), (’you’, ’have’, ’broken’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,

’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),

(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’

north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’,

’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’

forest’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’, ’

animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’animate’), (’window’, ’is

’, ’animate’), (’broken’, ’is’, ’animate’), (’clockwork’, ’is’, ’animate’), (’

clockwork_canary’, ’is’, ’animate’)]

==========STEP 33==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest.

You are carrying A broken jewelencrusted egg The broken jewelencrusted egg contains A

broken clockwork canary

Taken.

take egg

Action: shake egg

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’clockwork’), (’you’, ’have’, ’broken’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,

’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),
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(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’

north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’,

’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’

forest’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’, ’

animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’animate’), (’window’, ’is

’, ’animate’), (’broken’, ’is’, ’animate’), (’clockwork’, ’is’, ’animate’), (’

clockwork_canary’, ’is’, ’animate’)]

==========STEP 34==========

Observation:

Up a Tree You are about 10 feet above the ground nestled among some large branches. The

nearest branch above you is above your reach. Beside you on the branch is a small

birds nest.

You are carrying A broken jewelencrusted egg

The contents of the broken jewelencrusted egg spills to the ground.

shake egg

Action: down

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’clockwork’), (’you’, ’have’, ’broken’), (’you’, ’

have’, ’egg’), (’north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’

forest_path’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’

trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’)

, (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’

clearing’), (’north’, ’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’

in’, ’forest_path’), (’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’

forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’west’, ’forest’), (’

forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’

animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is

’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest

’, ’west’, ’clearing’), (’mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’),

(’clearing’, ’north’, ’forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’

animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’

animate’), (’east’, ’in’, ’forest’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate

’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’
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animate’), (’window’, ’is’, ’animate’), (’broken’, ’is’, ’animate’), (’clockwork’, ’is

’, ’animate’), (’clockwork_canary’, ’is’, ’animate’), (’ground’, ’is’, ’animate’)]

==========STEP 35==========

Observation:

Forest Path This is a path winding through a dimly lit forest. The path heads northsouth

here. One particularly large tree with some low branches stands at the edge of the

path. There is a broken clockwork canary here.

You are carrying A broken jewelencrusted egg

Forest Path There is a broken clockwork canary here.

down

Action: east

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’in’, ’forest_path’), (’

north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’

windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’

north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is

’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’,

’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’),

(’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’

north_of_house’), (’forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’

clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’,

’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’

east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’,

’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’

forest’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’, ’

animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’animate’), (’canary’, ’in

’, ’forest_path’), (’window’, ’is’, ’animate’), (’broken’, ’is’, ’animate’), (’broken

’, ’in’, ’forest_path’), (’clockwork’, ’is’, ’animate’), (’clockwork’, ’in’, ’

forest_path’), (’clockwork_canary’, ’is’, ’animate’), (’clockwork_canary’, ’in’, ’

forest_path’), (’ground’, ’is’, ’animate’)]

==========STEP 36==========

Observation:

Forest This is a dimly lit forest, with large trees all around.

You are carrying A broken jewelencrusted egg

Forest

east
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Action: go around egg

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’, ’broken’), (’you’, ’in’, ’

forest’), (’north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’

forest_path’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’

trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’)

, (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’

clearing’), (’north’, ’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’

in’, ’forest_path’), (’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’

forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’west’, ’forest’), (’

forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’

animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is

’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest

’, ’west’, ’clearing’), (’mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’),

(’clearing’, ’north’, ’forest_path’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’

animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’

animate’), (’east’, ’in’, ’forest’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate

’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’

animate’), (’canary’, ’in’, ’forest_path’), (’window’, ’is’, ’animate’), (’broken’, ’

is’, ’animate’), (’broken’, ’in’, ’forest_path’), (’clockwork’, ’is’, ’animate’), (’

clockwork’, ’in’, ’forest_path’), (’clockwork_canary’, ’is’, ’animate’), (’

clockwork_canary’, ’in’, ’forest_path’), (’ground’, ’is’, ’animate’)]

==========STEP 37==========

Observation:

Forest This is a dimly lit forest, with large trees all around. You hear in the distance

the chirping of a song bird.

You are carrying A broken jewelencrusted egg You hear in the distance the chirping of a

song bird.

Use compass directions for movement.

go around egg

Action: put down nest

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’, ’broken’), (’north_of_house’,

’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’

north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’
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trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path

’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’

north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’

animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’

forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’,

’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’,

’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’

forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’mountains’, ’is’, ’animate

’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’pile’, ’in

’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in

’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’egg’, ’is’, ’

animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’,

’animate’), (’canary’, ’is’, ’animate’), (’canary’, ’in’, ’forest_path’), (’window’, ’

is’, ’animate’), (’broken’, ’is’, ’animate’), (’broken’, ’in’, ’forest_path’), (’

clockwork’, ’is’, ’animate’), (’clockwork’, ’in’, ’forest_path’), (’clockwork_canary’,

’is’, ’animate’), (’clockwork_canary’, ’in’, ’forest_path’), (’ground’, ’is’, ’

animate’)]

==========STEP 38==========

Observation:

Forest This is a dimly lit forest, with large trees all around.

You are carrying A broken jewelencrusted egg

You cant see any nest here! You hear in the distance the chirping of a song bird.

put down nest

Action: go around egg

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’, ’broken’), (’north_of_house’,

’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’

north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’

trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path

’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’

north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’

animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’

forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’,

’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’,

’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’

forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’mountains’, ’is’, ’animate

’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’pile’, ’in

’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in
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’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’egg’, ’is’, ’

animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’,

’animate’), (’canary’, ’is’, ’animate’), (’canary’, ’in’, ’forest_path’), (’window’, ’

is’, ’animate’), (’broken’, ’is’, ’animate’), (’broken’, ’in’, ’forest_path’), (’

clockwork’, ’is’, ’animate’), (’clockwork’, ’in’, ’forest_path’), (’clockwork_canary’,

’is’, ’animate’), (’clockwork_canary’, ’in’, ’forest_path’), (’ground’, ’is’, ’

animate’)]

==========STEP 39==========

Observation:

Forest This is a dimly lit forest, with large trees all around.

You are carrying A broken jewelencrusted egg

Use compass directions for movement.

go around egg

Action: northwest

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’, ’broken’), (’north_of_house’,

’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’

north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’

trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path

’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’

north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’

animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’

forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’,

’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’,

’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’

forest’, ’in’, ’forest’), (’forest’, ’west’, ’clearing’), (’mountains’, ’is’, ’animate

’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’pile’, ’in

’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in

’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’egg’, ’is’, ’

animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’,

’animate’), (’canary’, ’is’, ’animate’), (’canary’, ’in’, ’forest_path’), (’window’, ’

is’, ’animate’), (’broken’, ’is’, ’animate’), (’broken’, ’in’, ’forest_path’), (’

clockwork’, ’is’, ’animate’), (’clockwork’, ’in’, ’forest_path’), (’clockwork_canary’,

’is’, ’animate’), (’clockwork_canary’, ’in’, ’forest_path’), (’ground’, ’is’, ’

animate’)]

==========STEP 40==========

Observation:

Forest This is a dimly lit forest, with large trees all around.
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You are carrying A broken jewelencrusted egg

You cant go that way.

northwest

Action: south

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’mailbox’, ’is’, ’animate’), (’

mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’have’, ’jewel’), (’you’, ’have

’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’, ’broken’), (’north_of_house’,

’north’, ’west’), (’north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’

north_of_house’), (’windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’

trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path

’, ’in’, ’north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’

north’, ’in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’

animate’), (’large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’

forest_path’, ’west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’,

’forest_path’), (’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’,

’forest_path’), (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’

forest’, ’northwest’, ’forest’), (’forest’, ’west’, ’clearing’), (’mountains’, ’is’, ’

animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’pile

’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves

’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’egg’, ’is

’, ’animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’

is’, ’animate’), (’canary’, ’is’, ’animate’), (’canary’, ’in’, ’forest_path’), (’

window’, ’is’, ’animate’), (’broken’, ’is’, ’animate’), (’broken’, ’in’, ’forest_path

’), (’clockwork’, ’is’, ’animate’), (’clockwork’, ’in’, ’forest_path’), (’

clockwork_canary’, ’is’, ’animate’), (’clockwork_canary’, ’in’, ’forest_path’), (’

ground’, ’is’, ’animate’)]

==========STEP 41==========

Observation:

Clearing You are in a small clearing in a well marked forest path that extends to the east

and west.

You are carrying A broken jewelencrusted egg

Clearing You are in a small clearing in a well marked forest path that extends to the east

and west.

south

Action: west

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’west’, ’in’, ’clearing’), (’

mailbox’, ’is’, ’animate’), (’mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’
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have’, ’jewel’), (’you’, ’have’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’broken’), (’you’, ’in’, ’clearing’), (’north_of_house’, ’north’, ’west’), (’

north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’north_of_house’), (’

windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’

animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’

north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’north’, ’

in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’), (’

large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’

west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’),

(’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’)

, (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’

northwest’, ’forest’), (’forest’, ’in’, ’clearing’), (’mountains’, ’is’, ’animate’),

(’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’clearing’, ’

south’, ’forest’), (’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’

is’, ’animate’), (’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in

’, ’forest’), (’east’, ’in’, ’clearing’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’

animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is

’, ’animate’), (’canary’, ’in’, ’forest_path’), (’window’, ’is’, ’animate’), (’broken

’, ’is’, ’animate’), (’broken’, ’in’, ’forest_path’), (’clockwork’, ’is’, ’animate’),

(’clockwork’, ’in’, ’forest_path’), (’clockwork_canary’, ’is’, ’animate’), (’

clockwork_canary’, ’in’, ’forest_path’), (’ground’, ’is’, ’animate’)]

==========STEP 42==========

Observation:

Behind House You are behind the white house. A path leads into the forest to the east. In

one corner of the house there is a small window which is slightly ajar.

You are carrying A broken jewelencrusted egg

Behind House You are behind the white house. A path leads into the forest to the east. In

one corner of the house there is a small window which is slightly ajar.

west

Action: east

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’west’, ’in’, ’clearing’), (’

mailbox’, ’is’, ’animate’), (’mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’

have’, ’jewel’), (’you’, ’have’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’broken’), (’you’, ’in’, ’behind_house’), (’north_of_house’, ’north’, ’west’), (’

north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’north_of_house’), (’

windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’

animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’

north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’north’, ’

in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’), (’
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large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’

west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’),

(’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’)

, (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’

northwest’, ’forest’), (’forest’, ’in’, ’clearing’), (’forest’, ’in’, ’behind_house’),

(’mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’,

’forest_path’), (’clearing’, ’south’, ’forest’), (’pile’, ’in’, ’clearing’), (’pile’,

’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’clearing’), (’east’,

’is’, ’animate’), (’east’, ’in’, ’forest’), (’east’, ’in’, ’clearing’), (’east’, ’in’,

’behind_house’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’animate’), (’jewel’, ’is’,

’animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is’, ’animate’), (’canary’, ’

in’, ’forest_path’), (’window’, ’is’, ’animate’), (’window’, ’in’, ’behind_house’), (’

broken’, ’is’, ’animate’), (’broken’, ’in’, ’forest_path’), (’clockwork’, ’is’, ’

animate’), (’clockwork’, ’in’, ’forest_path’), (’clockwork_canary’, ’is’, ’animate’),

(’clockwork_canary’, ’in’, ’forest_path’), (’ground’, ’is’, ’animate’), (’behind_house

’, ’west’, ’clearing’)]

==========STEP 43==========

Observation:

Clearing You are in a small clearing in a well marked forest path that extends to the east

and west.

You are carrying A broken jewelencrusted egg

Clearing

east

Action: shake egg

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’west’, ’in’, ’clearing’), (’

mailbox’, ’is’, ’animate’), (’mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’

have’, ’jewel’), (’you’, ’have’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’broken’), (’you’, ’in’, ’clearing’), (’north_of_house’, ’north’, ’west’), (’

north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’north_of_house’), (’

windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’

animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’

north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’north’, ’

in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’), (’

large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’

west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’),

(’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’)

, (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’

northwest’, ’forest’), (’forest’, ’in’, ’clearing’), (’forest’, ’in’, ’behind_house’),

(’mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’,
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’forest_path’), (’clearing’, ’south’, ’forest’), (’clearing’, ’east’, ’behind_house’),

(’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’),

(’leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’

east’, ’in’, ’clearing’), (’east’, ’in’, ’behind_house’), (’egg’, ’is’, ’animate’), (’

nest’, ’is’, ’animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’),

(’canary’, ’is’, ’animate’), (’canary’, ’in’, ’forest_path’), (’window’, ’is’, ’

animate’), (’window’, ’in’, ’behind_house’), (’broken’, ’is’, ’animate’), (’broken’, ’

in’, ’forest_path’), (’clockwork’, ’is’, ’animate’), (’clockwork’, ’in’, ’forest_path

’), (’clockwork_canary’, ’is’, ’animate’), (’clockwork_canary’, ’in’, ’forest_path’),

(’ground’, ’is’, ’animate’), (’behind_house’, ’west’, ’clearing’)]

==========STEP 44==========

Observation:

Clearing You are in a small clearing in a well marked forest path that extends to the east

and west.

You are carrying A broken jewelencrusted egg

Shaken.

shake egg

Action: south

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’west’, ’in’, ’clearing’), (’

mailbox’, ’is’, ’animate’), (’mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’

have’, ’jewel’), (’you’, ’have’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’broken’), (’north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’

forest_path’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’

trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’)

, (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’

clearing’), (’north’, ’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’

in’, ’forest_path’), (’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’

forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’west’, ’forest’), (’

forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’

animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is

’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’northwest’, ’forest’),

(’forest’, ’in’, ’clearing’), (’forest’, ’in’, ’behind_house’), (’mountains’, ’is’, ’

animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’

clearing’, ’south’, ’forest’), (’clearing’, ’east’, ’behind_house’), (’pile’, ’in’, ’

clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’

clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’east’, ’in’, ’

clearing’), (’east’, ’in’, ’behind_house’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’

animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is

’, ’animate’), (’canary’, ’in’, ’forest_path’), (’window’, ’is’, ’animate’), (’window
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’, ’in’, ’behind_house’), (’broken’, ’is’, ’animate’), (’broken’, ’in’, ’forest_path’)

, (’clockwork’, ’is’, ’animate’), (’clockwork’, ’in’, ’forest_path’), (’

clockwork_canary’, ’is’, ’animate’), (’clockwork_canary’, ’in’, ’forest_path’), (’

ground’, ’is’, ’animate’), (’behind_house’, ’west’, ’clearing’)]

==========STEP 45==========

Observation:

Forest This is a dimly lit forest, with large trees all around.

You are carrying A broken jewelencrusted egg

Forest This is a dimly lit forest, with large trees all around.

south

Action: go around egg

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’west’, ’in’, ’clearing’), (’

mailbox’, ’is’, ’animate’), (’mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’

have’, ’jewel’), (’you’, ’have’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’broken’), (’you’, ’in’, ’forest’), (’north_of_house’, ’north’, ’west’), (’

north_of_house’, ’south’, ’forest_path’), (’windows’, ’in’, ’north_of_house’), (’

windows’, ’is’, ’animate’), (’trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’

animate’), (’trees’, ’in’, ’forest’), (’path’, ’is’, ’animate’), (’path’, ’in’, ’

north_of_house’), (’path’, ’in’, ’clearing’), (’north’, ’is’, ’animate’), (’north’, ’

in’, ’north_of_house’), (’large’, ’in’, ’forest_path’), (’large’, ’is’, ’animate’), (’

large’, ’in’, ’forest’), (’forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’

west’, ’forest’), (’forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’),

(’tree’, ’is’, ’animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’)

, (’forest’, ’is’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’

forest’), (’forest’, ’south’, ’clearing’), (’forest’, ’in’, ’behind_house’), (’

mountains’, ’is’, ’animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’

forest_path’), (’clearing’, ’south’, ’forest’), (’clearing’, ’east’, ’behind_house’),

(’pile’, ’in’, ’clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’

leaves’, ’in’, ’clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’

east’, ’in’, ’clearing’), (’east’, ’in’, ’behind_house’), (’egg’, ’is’, ’animate’), (’

nest’, ’is’, ’animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’),

(’canary’, ’is’, ’animate’), (’canary’, ’in’, ’forest_path’), (’window’, ’is’, ’

animate’), (’window’, ’in’, ’behind_house’), (’broken’, ’is’, ’animate’), (’broken’, ’

in’, ’forest_path’), (’clockwork’, ’is’, ’animate’), (’clockwork’, ’in’, ’forest_path

’), (’clockwork_canary’, ’is’, ’animate’), (’clockwork_canary’, ’in’, ’forest_path’),

(’ground’, ’is’, ’animate’), (’behind_house’, ’west’, ’clearing’)]

==========STEP 46==========

Observation:

Forest This is a dimly lit forest, with large trees all around.
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You are carrying A broken jewelencrusted egg

Use compass directions for movement.

go around egg

Action: go around egg

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’west’, ’in’, ’clearing’), (’

mailbox’, ’is’, ’animate’), (’mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’

have’, ’jewel’), (’you’, ’have’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’broken’), (’north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’

forest_path’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’

trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’)

, (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’

clearing’), (’north’, ’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’

in’, ’forest_path’), (’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’

forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’west’, ’forest’), (’

forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’

animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is

’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest

’, ’south’, ’clearing’), (’forest’, ’in’, ’behind_house’), (’mountains’, ’is’, ’

animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’

clearing’, ’south’, ’forest’), (’clearing’, ’east’, ’behind_house’), (’pile’, ’in’, ’

clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’

clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’east’, ’in’, ’

clearing’), (’east’, ’in’, ’behind_house’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’

animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is

’, ’animate’), (’canary’, ’in’, ’forest_path’), (’window’, ’is’, ’animate’), (’window

’, ’in’, ’behind_house’), (’broken’, ’is’, ’animate’), (’broken’, ’in’, ’forest_path’)

, (’clockwork’, ’is’, ’animate’), (’clockwork’, ’in’, ’forest_path’), (’

clockwork_canary’, ’is’, ’animate’), (’clockwork_canary’, ’in’, ’forest_path’), (’

ground’, ’is’, ’animate’), (’behind_house’, ’west’, ’clearing’)]

==========STEP 47==========

Observation:

Forest This is a dimly lit forest, with large trees all around.

You are carrying A broken jewelencrusted egg

Use compass directions for movement.

go around egg

Action: west

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’west’, ’in’, ’clearing’), (’
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mailbox’, ’is’, ’animate’), (’mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’

have’, ’jewel’), (’you’, ’have’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’broken’), (’north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’

forest_path’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’

trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’)

, (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’

clearing’), (’north’, ’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’

in’, ’forest_path’), (’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’

forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’west’, ’forest’), (’

forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’

animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is

’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest

’, ’south’, ’clearing’), (’forest’, ’in’, ’behind_house’), (’mountains’, ’is’, ’

animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’

clearing’, ’south’, ’forest’), (’clearing’, ’east’, ’behind_house’), (’pile’, ’in’, ’

clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’

clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’east’, ’in’, ’

clearing’), (’east’, ’in’, ’behind_house’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’

animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is

’, ’animate’), (’canary’, ’in’, ’forest_path’), (’window’, ’is’, ’animate’), (’window

’, ’in’, ’behind_house’), (’broken’, ’is’, ’animate’), (’broken’, ’in’, ’forest_path’)

, (’clockwork’, ’is’, ’animate’), (’clockwork’, ’in’, ’forest_path’), (’

clockwork_canary’, ’is’, ’animate’), (’clockwork_canary’, ’in’, ’forest_path’), (’

ground’, ’is’, ’animate’), (’behind_house’, ’west’, ’clearing’)]

==========STEP 48==========

Observation:

Forest This is a forest, with trees in all directions. To the east, there appears to be

sunlight.

You are carrying A broken jewelencrusted egg

Forest

west

Action: south

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’west’, ’in’, ’clearing’), (’

mailbox’, ’is’, ’animate’), (’mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’

have’, ’jewel’), (’you’, ’have’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’broken’), (’north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’

forest_path’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’

trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’)

, (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’
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clearing’), (’north’, ’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’

in’, ’forest_path’), (’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’

forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’west’, ’forest’), (’

forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’

animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is

’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’west’, ’forest’), (’

forest’, ’south’, ’clearing’), (’forest’, ’in’, ’behind_house’), (’mountains’, ’is’, ’

animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’

clearing’, ’south’, ’forest’), (’clearing’, ’east’, ’behind_house’), (’pile’, ’in’, ’

clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’

clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’east’, ’in’, ’

clearing’), (’east’, ’in’, ’behind_house’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’

animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is

’, ’animate’), (’canary’, ’in’, ’forest_path’), (’window’, ’is’, ’animate’), (’window

’, ’in’, ’behind_house’), (’broken’, ’is’, ’animate’), (’broken’, ’in’, ’forest_path’)

, (’clockwork’, ’is’, ’animate’), (’clockwork’, ’in’, ’forest_path’), (’

clockwork_canary’, ’is’, ’animate’), (’clockwork_canary’, ’in’, ’forest_path’), (’

ground’, ’is’, ’animate’), (’behind_house’, ’west’, ’clearing’)]

==========STEP 49==========

Observation:

Forest This is a dimly lit forest, with large trees all around.

You are carrying A broken jewelencrusted egg

Forest

south

Action: throw forest at forest

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’west’, ’in’, ’clearing’), (’

mailbox’, ’is’, ’animate’), (’mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’

have’, ’jewel’), (’you’, ’have’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’broken’), (’north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’

forest_path’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’

trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’)

, (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’

clearing’), (’north’, ’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’

in’, ’forest_path’), (’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’

forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’west’, ’forest’), (’

forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’

animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is

’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest

’, ’south’, ’clearing’), (’forest’, ’in’, ’behind_house’), (’mountains’, ’is’, ’
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animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’

clearing’, ’south’, ’forest’), (’clearing’, ’east’, ’behind_house’), (’pile’, ’in’, ’

clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’

clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’east’, ’in’, ’

clearing’), (’east’, ’in’, ’behind_house’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’

animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is

’, ’animate’), (’canary’, ’in’, ’forest_path’), (’window’, ’is’, ’animate’), (’window

’, ’in’, ’behind_house’), (’broken’, ’is’, ’animate’), (’broken’, ’in’, ’forest_path’)

, (’clockwork’, ’is’, ’animate’), (’clockwork’, ’in’, ’forest_path’), (’

clockwork_canary’, ’is’, ’animate’), (’clockwork_canary’, ’in’, ’forest_path’), (’

ground’, ’is’, ’animate’), (’behind_house’, ’west’, ’clearing’)]

==========STEP 50==========

Observation:

Forest This is a dimly lit forest, with large trees all around.

You are carrying A broken jewelencrusted egg

You dont have the forest.

throw forest at forest

Action: north

[(’door’, ’in’, ’west’), (’door’, ’is’, ’animate’), (’west’, ’is’, ’animate’), (’west’, ’

in’, ’west’), (’west’, ’west’, ’north_of_house’), (’west’, ’in’, ’clearing’), (’

mailbox’, ’is’, ’animate’), (’mailbox’, ’in’, ’west’), (’you’, ’is’, ’you’), (’you’, ’

have’, ’jewel’), (’you’, ’have’, ’encrusted’), (’you’, ’have’, ’egg’), (’you’, ’have’,

’broken’), (’north_of_house’, ’north’, ’west’), (’north_of_house’, ’south’, ’

forest_path’), (’windows’, ’in’, ’north_of_house’), (’windows’, ’is’, ’animate’), (’

trees’, ’in’, ’north_of_house’), (’trees’, ’is’, ’animate’), (’trees’, ’in’, ’forest’)

, (’path’, ’is’, ’animate’), (’path’, ’in’, ’north_of_house’), (’path’, ’in’, ’

clearing’), (’north’, ’is’, ’animate’), (’north’, ’in’, ’north_of_house’), (’large’, ’

in’, ’forest_path’), (’large’, ’is’, ’animate’), (’large’, ’in’, ’forest’), (’

forest_path’, ’north’, ’north_of_house’), (’forest_path’, ’west’, ’forest’), (’

forest_path’, ’south’, ’clearing’), (’tree’, ’in’, ’forest_path’), (’tree’, ’is’, ’

animate’), (’south’, ’is’, ’animate’), (’south’, ’in’, ’forest_path’), (’forest’, ’is

’, ’animate’), (’forest’, ’east’, ’forest_path’), (’forest’, ’in’, ’forest’), (’forest

’, ’south’, ’clearing’), (’forest’, ’in’, ’behind_house’), (’mountains’, ’is’, ’

animate’), (’mountains’, ’in’, ’forest’), (’clearing’, ’north’, ’forest_path’), (’

clearing’, ’south’, ’forest’), (’clearing’, ’east’, ’behind_house’), (’pile’, ’in’, ’

clearing’), (’pile’, ’is’, ’animate’), (’leaves’, ’is’, ’animate’), (’leaves’, ’in’, ’

clearing’), (’east’, ’is’, ’animate’), (’east’, ’in’, ’forest’), (’east’, ’in’, ’

clearing’), (’east’, ’in’, ’behind_house’), (’egg’, ’is’, ’animate’), (’nest’, ’is’, ’

animate’), (’jewel’, ’is’, ’animate’), (’encrusted’, ’is’, ’animate’), (’canary’, ’is

’, ’animate’), (’canary’, ’in’, ’forest_path’), (’window’, ’is’, ’animate’), (’window
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’, ’in’, ’behind_house’), (’broken’, ’is’, ’animate’), (’broken’, ’in’, ’forest_path’)

, (’clockwork’, ’is’, ’animate’), (’clockwork’, ’in’, ’forest_path’), (’

clockwork_canary’, ’is’, ’animate’), (’clockwork_canary’, ’in’, ’forest_path’), (’

ground’, ’is’, ’animate’), (’behind_house’, ’west’, ’clearing’)]

A.4 Datasheet

I provide comprehensive documentation of the dataset based on Datasheets for Datasets (Ge-

bru et al. 2018).

A.4.1 Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was

there a specific gap that needed to be filled? Please provide a description. I seek

to create agents that exhibit human-like capabilities such as commonsense reasoning and

natural language understanding in interactive and situated settings. In pursuit of this goal,

I provide a dataset that enables the creation of learning agents that can build knowledge

graph-based world models of interactive narratives.

Who created this dataset (e.g., which team, research group) and on behalf of

which entity (e.g., company, institution, organization)? It was created by Prithviraj

Ammanabrolu and Mark Riedl at the Georgia Institute of Technology.

Who funded the creation of the dataset? If there is an associated grant, please

provide the name of the grantor and the grant name and number. It was funded by

the US’s Defense Advanced Research Projects Agency (DARPA) as part of a fundamen-

tal science research grant Science of Artificial Intelligence and Learning for Open-world

Novelty (SAIL-ON https://www.darpa.mil/program/science-of-artificial-intelligence-and-

learning-for-open-world-novelty).
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A.4.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos,

people, countries)? Are there multiple types of instances (e.g., movies, users, and

ratings; people and interactions between them; nodes and edges)? Please provide a

description. Each instance of our dataset takes the tuples of 〈st, at, st+1, rt+1〉 where st

and st+1 are two subsequent states of a text game with at being the action used to transition

states and rt+1 is the observed reward for some step t. Everything is in text. These are all

collected from various text games and examples of instances are found in Appendix A.1.

How many instances are there in total (of each type, if appropriate)? The training

data has 24198 mappings and is collected across 27 games in multiple genres and contains

a further 7836 heldout instances over 9 additional games in the test set.

Does the dataset contain all possible instances or is it a sample (not necessarily

random) of instances from a larger set? If the dataset is a sample, then what is the

larger set? Is the sample representative of the larger set (e.g., geographic coverage)?

If so, please describe how this representativeness was validated/verified. If it is not

representative of the larger set, please describe why not (e.g., to cover a more diverse

range of instances, because instances were withheld or unavailable). The dataset is a

sample of the larger set of all possible states in each game. The samples are made to be

biased towards states near the walkthroughs required to finish a game.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or

images)or features? In either case, please provide a description. Data is all in the form

of text, either raw or in structured knowledge graph form.

Is there a label or target associated with each instance? If so, please provide a

description. The data has multiple fields, depending on the tasks defined any of them can

be used as labels. E.g. the knowledge graph prediction task has the graph field as the target.

Is any information missing from individual instances? If so, please provide a de-

scription, explaining why this information is missing (e.g., because it was unavail-
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able). This does not include intentionally removed information, but might include,

e.g., redacted text Not all games have human readable attributes for objects—when they

do not, these are omitted by leaving the attributes fields blank. All other data is present for

all instances.

Are relationships between individual instances made explicit (e.g., users’ movie

ratings, social network links)? If so, please describe how these relationships are made

explicit. Instances are grouped together by game through the game field.

Are there recommended data splits (e.g., training, development/validation, test-

ing)? If so, please provide a description of these splits, explaining the rationale behind

them. I provide a training split of 27 games, and a testing split of 9 games. These are se-

lected on the basis of existing works and each split contains a diverse set of games in terms

of genre.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please

provide a description.

Is the dataset self-contained, or does it link to or otherwise rely on external re-

sources (e.g., websites, tweets, other datasets)? If it links to or relies on external

resources, a) are there guarantees that they will exist, and remain constant, over

time; b) are there official archival versions of the complete dataset (i.e., including

the external resources as they existed at the time the dataset was created); c) are

there any restrictions (e.g., licenses, fees) associated with any of the external resources

that might apply to a future user? Please provide descriptions of all external re-

sources and any restrictions associated with them, as well as links or other access

points, as appropriate. The creation of the dataset depends on the Jericho framework

https://github.com/microsoft/jericho but the archival versions themselves do not have any

dependencies.

Does the dataset contain data that might be considered confidentiality, data that

includes the content of individuals non-public communications)? If so, please provide
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a description. No, all data is part of games that are already public.

Does the dataset contain data that, if viewed directly, might be offensive, insulting,

threatening, or might otherwise cause anxiety? If so, please describe why. The data is

collected from games containing situations of non-normative language usage—describing

situations that fictional characters may engage in that are potentially inappropriate, and

on occasion impossible, for the real world such as running a troll through with a sword.

Instances of such scenarios are mitigated by careful curation of the games that the data is

collected from. The original Jericho framework (Hausknecht et al. 2020)—further verified

by us in this work—uses a curated set of games found not to contain extreme examples

of non-normative language usage. This is based on manual vetting and (existing) crowd-

sourced reviews on the popular interactive narrative forum IFDB https://ifdb.org/.

A.4.3 Collection

How was the data associated with each instance acquired? Was the data directly ob-

servable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses),

or indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based

guesses for age or language)? If data was reported by subjects or indirectly in-

ferred/derived from other data, was the data validated/verified? If so, please describe

how I build off the popular text game simulator Jericho (Hausknecht et al. 2020), I have

constructed a dataset dubbed Worldformer that maps text game state observations to both

the underlying ground truth knowledge graph representations of the game and the set of

contextually relevant actions that can be performed in that state.

What mechanisms or procedures were used to collect the data (e.g., hardware ap-

paratus or sensor, manual human curation, software program, software API)? How

were these mechanisms or procedures validated? To collect the 〈st, at, st+1, rt+1〉 tu-

ples I implement a basic agent that explores the game along a trajectory corresponding to a

game walkthrough. Game walkthroughs are texts describing the solutions to games, gener-
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ally retrieved from the internet, but already part of the Jericho framework. Walkthroughs,

however, only present one possible solution to a game and solve all the core puzzles re-

quired to complete a game with the maximum possible score. To achieve greater coverage

of the game’s state space, our data collection agent stops off to explore by executing random

valid actions for n steps before resetting to the walkthrough.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,

deterministic, probabilistic with specific sampling probabilities)? Randomly sampled

actions are based on a random seed in Python’s random package https://docs.python.org/3/

library/random.html. I provide a seed and the specific package version.

Who was involved in the data collection process (e.g., students, crowdworkers, con-

tractors) and how were they compensated (e.g., how much were crowdworkers paid)?

Only the authors were involved, building on the contributions of the Jericho developers.

Over what timeframe was the data collected? Does this timeframe match the cre-

ation timeframe of the data associated with the instances (e.g., recent crawl of old

news articles)? If not, please describe the timeframe in which the data associated with

the instances was created. This dataset was developed over a period of 6 months, though

the games used within date back to the 1970s.

Were any ethical review processes conducted (e.g., by an institutional review board)?

If so, please provide a description of these review processes, including the outcomes,

as well as a link or other access point to any supporting documentation. No human

subjects were involved, no IRB process was undertaken.

A.4.4 Preprocessing

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or buck-

eting, tokenization, part-of-speech tagging, SIFT feature extraction, removal of in-

stances, processing of missing values)? If so, please provide a description. If not, you

may skip the remainder of the questions in this section. Games were decompiled to
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extract attributes and ground truth knowledge graphs, the creation script is provided in the

GitHub repo.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data

(e.g., to support unanticipated future uses)? If so, please provide a link or other access

point to the “raw” data. No, raw binary game states were not saved and were converted

to human readable text.

Is the software used to preprocess/clean/label the instances available? If so, please

provide a link or other access point. Games were decompiled to extract attributes and

ground truth knowledge graphs, the creation script will be provided in the GitHub reposi-

tory.

A.4.5 Uses

Has the dataset been used for any tasks already? If so, please provide a description.

No.

Is there a repository that links to any or all papers or systems that use the dataset?

If so, please provide a link or other access point. No.

What (other) tasks could the dataset be used for? There are many more tasks that

can be framed for other challenges related to world modeling from this dataset. Some

immediate examples: (1) offline reinforcement learning for game agents through imitation

learning—predicting the sequence of actions that finish the game based on walkthroughs

and reward information; (2) knowledge graph verbalization, a form of the standard data-to-

text natural language processing task (Wiseman et al. 2017), in which I learn to generate

text that is conditioned on a knowledge graph; and (3) description generation conditioned

on the names of various objects, locations, and characters—with applications in long-form

text generation domains such as automated storytelling (Fan et al. 2019; Martin et al. 2018)

and procedural generation of interactive narratives (Ammanabrolu et al. 2020b; Walton et

al. 2020).
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Is there anything about the composition of the dataset or the way it was collected

and preprocessed/cleaned/labeled that might impact future uses? For example, is

there anything that a future user might need to know to avoid uses that could result in

unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues)

or other undesirable harms (e.g., financial harms, legal risks) If so, please provide a

description. Is there anything a future user could do to mitigate these undesirable

harms? Users should keep in mind that these come from games and can potentially de-

scribe non-normative situations.

Are there tasks for which the dataset should not be used? If so, please provide a de-

scription This dataset should not be used for tasks that involve direct physical interactions

with humans, such as robotics.

A.4.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company,

institution, organization) on behalf of which the dataset was created? If so, please

provide a description. It is open-sourced.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?

Does the dataset have a digital object identifier (DOI)? The dataset will be open-sourced

at https://github.com/JerichoWorld/JerichoWorld.

When will the dataset be distributed? It was first released in May 2021.

Will the dataset be distributed under a copyright or other intellectual property

(IP) license, and/or under applicable terms of use (ToU)? If so, please describe this

license and/or ToU, and provide a link or other access point to, or otherwise repro-

duce, any relevant licensing terms or ToU, as well as any fees associated with these

restrictions. The dataset will be under an MIT license, this is indicated on the GitHub

repository.

Have any third parties imposed IP-based or other restrictions on the data associ-
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ated with the instances? If so, please describe these restrictions, and provide a link or

other access point to, or otherwise reproduce, any relevant licensing terms, as well as

any fees associated with these restrictions. No.

Do any export controls or other regulatory restrictions apply to the dataset or to

individual instances? If so, please describe these restrictions, and provide a link or

other access point to, or otherwise reproduce, any supporting documentation. No.

A.4.7 Maintenance

Who is supporting/hosting/maintaining the dataset? Prithviraj Ammanabrolu will be

responsible for maintenance.

How can the owner/curator/manager of the dataset be contacted (e.g., email ad-

dress)? raj.ammanabrolu@gatech.edu or by filing an issue on the GitHub.

Is there an erratum? If so, please provide a link or other access point No.

Will the dataset be updated (e.g., to correct labeling errors, add new instances,

delete instances)? If so, please describe how often, by whom, and how updates will

be communicated to users (e.g., mailing list, GitHub)? Yes, more games will be added

and corresponding data will be collected. Previous versions will be kept for backwards

compatibility.

If the dataset relates to people, are there applicable limits on the retention of the

data associated with the instances (e.g., were individuals in question told that their

data would be retained for a fixed period of time and then deleted)? If so, please

describe these limits and explain how they will be enforced. No.

Will older versions of the dataset continue to be supported/hosted/maintained? If

so, please describe how. If not, please describe how its obsolescence will be communi-

cated to users. Yes, versions will be archived on the GitHub repository.

If others want to extend/augment/build on/contribute to the dataset, is there a

mechanism for them to do so? If so, please provide a description. Will these contri-
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butions be validated/verified? If so, please describe how. If not, why not? Is there

a process for communicating/distributing these contributions to other users? If so,

please provide a description They can fork and submit pull requests to the current reposi-

tory if they wish to extend it—these will be validated in an open-source manner on GitHub

via reviews of the extensions.
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APPENDIX B

GAME PLAYING EXPERIMENTS

B.1 KG-A2C

Episodes are terminated after 100 valid steps or game over/victory. Agents that decode

invalid actions often wouldn’t make it very far into the game, and so I only count valid-

actions against the hundred step limit. All agents are trained individually on each game and

then evaluated on that game. All A2C based agents are trained using data collected from 32

parallel environments. TDQN was trained using a single environment. Hyperparameters

for all agents were tuned on the game of Zork1 and held constant across all other games.

Final reported scores are an average over 5 runs of each algorithm.
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Figure B.1: Learning curves for KGA2C-full. Shaded regions indicate standard deviations.
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B.2 Q*BERT

This section outlines how Q*BERT knowledge graph examples over a particular trajec-

tory, architecture details, MC!Q*BERT/GO!Q*BERT training details, and hyperparameter

details for all experiments.

B.2.1 Q*BERT Knowledge Graph Update Examples

Below is an excerpt from Zork1 showing the exact observations given to the Q*BERT,the

knowledge graph, and the corresponding action taken by the agent after the graph extrac-

tion and update process has occurred as described above for a trajectory consisting of 5

timesteps. These timesteps begin at the start of the game in West of House and continue till

the agent has entered the Kitchen as seen in Fig. B.4. The set of 〈s, r, o〉 triples that make

up the graph are in the text and the figure shows a partial visualization of the graph at that

particular step in the trajectory.
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[loc] West of House You are standing in an open field west of a white house, with a

boarded front door. There is a small mailbox here. [inv] You are empty handed.

[obs] Copyright c 1981, 1982, 1983 Infocom, Inc. All rights reserved. ZORK is a registered

trademark of Infocom, Inc. Revision 88 / Serial number 840726 West of House You are

standing in an open field west of a white house, with a boarded front door. There is a

small mailbox here.

[atr] talkable, seen, lieable, enterable, nodwarf, indoors, visited, handed, lockable,

surface, thing, water_room, unlock, lost, afflicted, is_treasure, converse, mentioned,

male, npcworn, no_article, relevant, scored, queryable, town, pluggable, happy,

is_followable, legible, multitude, burning, room, clothing, underneath, ward_area,

little, intact, animate, bled_in, supporter, readable, openable, near, nonlocal, door,

plugged, sittable, toolbit, vehicle, light, lens_searchable, open, familiar,

is_scroll, aimable, takeable, static, unique, concealed, vowelstart, alcoholic,

bodypart, general, is_spell, full, dry_land, pushable, known, proper, inside, clean,

ambiguously_plural, container, edible, treasure, can_plug, weapon, is_arrow,

insubstantial, pluralname, transparent, is_coin, air_room, scenery, on, is_spell_book,

burnt, burnable, auto_searched, locked, switchable, absent, rockable, beenunlocked,

progressing, severed, worn, windy, stone, random, neuter, legible, female, asleep,

wiped

[graph] [(you, in, west), (door, is, animate), (door, in, west), (west, is, animate), (

mailbox, in, west), (mailbox, is, animate)]

[next act] go north
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[loc] North of House You are facing the north side of a white house. There is no door here

, and all the windows are boarded up. To the north a narrow path winds through the

trees.

[inv] You are empty handed.

[obs] North of House You are facing the north side of a white house. There is no door here

, and all the windows are boarded up. To the north a narrow path winds through the

trees.

[atr] talkable, seen, lieable, enterable, nodwarf, indoors, visited, handed, lockable,

surface, thing, water_room, unlock, lost, afflicted, is_treasure, converse, mentioned,

male, npcworn, no_article, relevant, scored, queryable, town, pluggable, happy,

is_followable, legible, multitude, burning, room, clothing, underneath, ward_area,

little, intact, animate, bled_in, supporter, readable, openable, near, nonlocal, door,

plugged, sittable, toolbit, vehicle, light, lens_searchable, open, familiar,

is_scroll, aimable, takeable, static, unique, concealed, vowelstart, alcoholic,

bodypart, general, is_spell, full, dry_land, pushable, known, proper, inside, clean,

ambiguously_plural, container, edible, treasure, can_plug, weapon, is_arrow,

insubstantial, pluralname, transparent, is_coin, air_room, scenery, on, is_spell_book,

burnt, burnable, auto_searched, locked, switchable, absent, rockable, beenunlocked,

progressing, severed, worn, windy, stone, random, neuter, legible, female, asleep,

wiped

[graph] [(north_of_house, north, west), (you, in, north_of_house), (door, is, animate), (

door, in, west), (west, is, animate), (west, in, west), (mailbox, in, west), (mailbox,

is, animate), (windows, in, north_of_house), (windows, is, animate), (north, is,

animate), (north, in, north_of_house), (path, is, animate), (path, in, north_of_house)

, (trees, in, north_of_house), (trees, is, animate)]

[next act] go east
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[loc] Behind House You are behind the white house. A path leads into the forest to the

east. In one corner of the house there is a small window which is slightly ajar.

[inv] You are empty handed.

[obs] Behind House You are behind the white house. A path leads into the forest to the

east. In one corner of the house there is a small window which is slightly ajar.

[atr] talkable, seen, lieable, enterable, nodwarf, indoors, visited, handed, lockable,

surface, thing, water_room, unlock, lost, afflicted, is_treasure, converse, mentioned,

male, npcworn, no_article, relevant, scored, queryable, town, pluggable, happy,

is_followable, legible, multitude, burning, room, clothing, underneath, ward_area,

little, intact, animate, bled_in, supporter, readable, openable, near, nonlocal, door,

plugged, sittable, toolbit, vehicle, light, lens_searchable, open, familiar,

is_scroll, aimable, takeable, static, unique, concealed, vowelstart, alcoholic,

bodypart, general, is_spell, full, dry_land, pushable, known, proper, inside, clean,

ambiguously_plural, container, edible, treasure, can_plug, weapon, is_arrow,

insubstantial, pluralname, transparent, is_coin, air_room, scenery, on, is_spell_book,

burnt, burnable, auto_searched, locked, switchable, absent, rockable, beenunlocked,

progressing, severed, worn, windy, stone, random, neuter, legible, female, asleep,

wiped

[graph] [(north_of_house, north, west), (behind_house, east, north_of_house), (you, in,

behind_house), (door, is, animate), (door, in, west), (west, is, animate), (west, in,

west), (you, in, behind_house), (mailbox, in, west), (mailbox, is, animate), (windows,

in, north_of_house), (windows, is, animate), (north, is, animate), (north, in,

north_of_house), (path, is, animate), (path, in, north_of_house), (trees, in,

north_of_house), (trees, is, animate), (window, in, behind_house), (window, is,

animate), (forest, in, behind_house), (forest, is, animate), (east, in, behind_house),

(east, is, animate)]

[next act] open window
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[loc] Behind House You are behind the white house. A path leads into the forest to the

east. In one corner of the house there is a small window which is open. [inv] You are

empty handed.

[obs] With great effort, you open the window far enough to allow entry.

[atr] talkable, seen, lieable, enterable, nodwarf, indoors, visited, handed, lockable,

surface, thing, water_room, unlock, lost, afflicted, is_treasure, converse, mentioned,

male, npcworn, no_article, relevant, scored, queryable, town, pluggable, happy,

is_followable, legible, multitude, burning, room, clothing, underneath, ward_area,

little, intact, animate, bled_in, supporter, readable, openable, near, nonlocal, door,

plugged, sittable, toolbit, vehicle, light, lens_searchable, open, familiar,

is_scroll, aimable, takeable, static, unique, concealed, vowelstart, alcoholic,

bodypart, general, is_spell, full, dry_land, pushable, known, proper, inside, clean,

ambiguously_plural, container, edible, treasure, can_plug, weapon, is_arrow,

insubstantial, pluralname, transparent, is_coin, air_room, scenery, on, is_spell_book,

burnt, burnable, auto_searched, locked, switchable, absent, rockable, beenunlocked,

progressing, severed, worn, windy, stone, random, neuter, legible, female, asleep,

wiped

[graph] [(north_of_house, north, west), (behind_house, east, north_of_house), (you, in,

behind_house), (door, is, animate), (door, in, west), (west, is, animate), (west, in,

west), (mailbox, in, west), (mailbox, is, animate), (windows, in, north_of_house), (

windows, is, animate), (windows, is, open), (north, is, animate), (north, in,

north_of_house), (path, is, animate), (path, in, north_of_house), (trees, in,

north_of_house), (trees, is, animate), (window, in, behind_house), (window, is,

animate), (forest, in, behind_house), (forest, is, animate), (east, in, behind_house),

(east, is, animate)]

248



north

east

in

in

in

in

in north_of_house

west

behind_house

kitchen

you

window

table

bottle

[loc] Kitchen You are in the kitchen of the white house. A table seems to have been used

recently for the preparation of food. A passage leads to the west and a dark staircase

can be seen leading upward. A dark chimney leads down and to the east is a small

window which is open. On the table is an elongated brown sack, smelling of hot peppers

. A bottle is sitting on the table. The glass bottle contains: A quantity of water

[inv] You are empty handed.

[obs] Kitchen You are in the kitchen of the white house. A table seems to have been used

recently for the preparation of food. A passage leads to the west and a dark staircase

can be seen leading upward. A dark chimney leads down and to the east is a small

window which is open. On the table is an elongated brown sack, smelling of hot peppers

. A bottle is sitting on the table. The glass bottle contains: A quantity of water

[atr] talkable, seen, lieable, enterable, nodwarf, indoors, visited, handed, lockable,

surface, thing, water_room, unlock, lost, afflicted, is_treasure, converse, mentioned,

male, npcworn, no_article, relevant, scored, queryable, town, pluggable, happy,

is_followable, legible, multitude, burning, room, clothing, underneath, ward_area,

little, intact, animate, bled_in, supporter, readable, openable, near, nonlocal, door,

plugged, sittable, toolbit, vehicle, light, lens_searchable, open, familiar,

is_scroll, aimable, takeable, static, unique, concealed, vowelstart, alcoholic,

bodypart, general, is_spell, full, dry_land, pushable, known, proper, inside, clean,

ambiguously_plural, container, edible, treasure, can_plug, weapon, is_arrow,

insubstantial, pluralname, transparent, is_coin, air_room, scenery, on, is_spell_book,

burnt, burnable, auto_searched, locked, switchable, absent, rockable, beenunlocked,

progressing, severed, worn, windy, stone, random, neuter, legible, female, asleep,

wiped

[graph] [(north_of_house, north, west), (behind_house, east, north_of_house), (

behind_house, in, kitchen), (you, in, kitchen), (door, is, animate), (door, in, west),

(west, is, animate), (west, in, west), (west, in, kitchen), (mailbox, in, west), (

mailbox, is, animate), (windows, in, north_of_house), (windows, is, animate), (north,

is, animate), (north, in, north_of_house), (path, is, animate), (path, in,

north_of_house), (trees, in, north_of_house), (trees, is, animate), (window, in,

behind_house), (window, is, animate), (forest, in, behind_house), (forest, is, animate

), (east, in, behind_house), (east, is, animate), (table, in, kitchen), (table, is,

animate)]]

[next act] go in
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B.2.2 Architecture

The sequential action decoder consists two GRUs that are linked together as seen in earlier

with KG-A2C. The first GRU decodes an action template and the second decodes objects

that can be filled into the template. These objects are constrained by a graph mask, i.e. the

decoder is only allowed to select entities that are already present in the knowledge graph.

The question answering network based on ALBERT (Lan et al. 2020) has the following

hyperparameters, taken from the original paper and known to work well on the SQuAD

2.0 (Rajpurkar et al. 2018) dataset. No further hyperparameter tuning was conducted.

Parameters Value

batch size 8

learning rate 3× 10−5

max seq len 512

doc stride 128

warmup steps 814

max steps 8144

gradient accumulation steps 24

B.2.3 MC!Q*BERT

The additional hyperparamters used for modular policy chaining are detailed below. Pa-

tience batch factor is the proportion of the batch that must have stagnated at a particular

score for patience number of episodes of unchanging score before a bottleneck is detected.

Patience within a range of 1000− 6000 in increments of 500 and buffer size within a range

of 10 − 60 in increments of 10 were the only additional parameters tuned for, on Zork1.

The resulting best hyperparameter set was used on the rest of the games.
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Parameters Value

patience 3000

buffer size 40

batch size 16

patience batch factor .75

B.2.4 GO!Q*BERT

Since the text games I are dealing with are mostly deterministic, with the exception of

Zork1 in later stages, I only focus on using Phase 1 of the Go-Explore algorithm to find

an optimal policy. Go-Explore maintains an archive of cells—defined as a set of states

that map to a single representation—to keep track of promising states. Ecoffet et al. 2021

simply encodes each cell by keeping track of the agent’s position and Madotto et al. 2020

use the textual observations encoded by recurrent neural network as a cell representation.

I improve on this implementation by training the Q*BERT network in parallel, using the

snapshot of the knowledge graph in conjunction with the game state to further encode the

current state and use this as a cell representation. At each step, Go-Explore chooses a cell

to explore at random (weighted by score to prefer more advanced cells). Q*BERT will

run for a number of steps in each cell, for all our experiments I use a cell step size of

32, starting with the knowledge graph state and the last seen state of the game from the

cell. This will generate a trajectory for the agent while further training Q*BERT at each

iteration, creating a new representation for the knowledge graph as well as a new game state

for the cell. After expanding a cell, Go-Explore will continue to sample cells by weight

to continue expanding its known states. At the same time, Q*BERT will benefit from the

heuristics of selecting preferred cells and be trained on promising states more often.

B.2.5 Graph Evaluation Results
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Figure B.2: Episode initial reward curves for KG-A2C and Q*BERT.
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B.2.6 Intrinsic Motivation and Structured Exploration Results

Figure B.3: Max initial reward curves for the exploration strategies.

253



Start here
Kitchen +10

Egg +5

Cellar +25

Painting +4

Figure B.4: A map of the world of Zork1 with some initial rewards annotated. The blue ar-
row indicates a connection between the left and right maps, corresponding to the overworld
and the dungeon.

B.3 Zork Agent Transcripts

Zork1 was identified by Hausknecht et al. 2020 to be one of the most difficult games in

their suite and the subject of much prior work (Zahavy et al. 2018; Yin and May 2019b).

Zork1 is one of the earliest IF games and is a dungeon-crawler—a player must explore a

vast labyrinth while fighting off enemies and complete puzzles in order to collect treasures.

It features a relatively sparse reward for collecting a treasure or moving along the right path

to one, and stochasticity in terms of random enemy movements.

To understand how humans progress in Zork1, a group of 10 human players—familiar

with IF games—were asked to play Zork1 for the first time (with no access to walk-

throughs). Half of the players reached a game score of around 40 before dying to the

first beatable NPC, a troll, mostly due to neglecting to collect a weapon to fight it with

beforehand. Three of the remaining players died to hidden traps even before reaching this

point, achieving scores between 5 and 15. The final two players made it significantly past
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the troll gaining scores of around 70.

The following transcript of KG-A2C playing Zork1, shows top predicted probabilities

for templates and objects.

Obs: Desc: West of House You are standing in an open field west of a white house, with a

boarded front door. There is a small mailbox here. Inv: You are emptyhanded. Feedback:

West of House You are standing in an open field west of a white house, with a boarded

front door. There is a small mailbox here.

Template probs: open OBJ: 0.339, east: 0.271, south: 0.215, west: 0.094, north: 0.031, go

around OBJ: 0.013, blow out OBJ: 0.011, throw OBJ at OBJ: 0.01, northwest: 0.009

Object probs: window: 0.7, small: 0.299

Interactive objects: boarded, small, front, door, white, mailbox, house, all

Action: west

Score: 0

---

Obs: Desc: Forest This is a forest, with trees in all directions. To the east, there

appears to be sunlight. Inv: You are emptyhanded. Feedback: Forest This is a forest,

with trees in all directions. To the east, there appears to be sunlight.

Template probs: open OBJ: 0.49, south: 0.304, east: 0.116, west: 0.04, north: 0.016, go

around OBJ: 0.011, throw OBJ at OBJ: 0.006, northwest: 0.006, blow out OBJ: 0.006

Object probs: window: 0.7, small: 0.3

Interactive objects: forest, all, trees

Action: east

Score: 0

---

Obs: Desc: Forest Path This is a path winding through a dimly lit forest. The path heads

northsouth here. One particularly large tree with some low branches stands at the edge

of the path. Inv: You are emptyhanded. Feedback: Forest Path This is a path winding

through a dimly lit forest. The path heads northsouth here. One particularly large

tree with some low branches stands at the edge of the path.

Template probs: up: 0.386, open OBJ: 0.358, east: 0.123, west: 0.06, north: 0.023, go

around OBJ: 0.014, blow out OBJ: 0.01, northwest: 0.009, throw OBJ at OBJ: 0.008

Object probs: window: 0.701, small: 0.299

Interactive objects: tree, path, branches, forest, large, all

Action: up

Score: 0

---

Obs: Desc: Up a Tree You are about 10 feet above the ground nestled among some large

branches. The nearest branch above you is above your reach. Beside you on the branch

is a small birds nest. In the birds nest is a large egg encrusted with precious jewels

, apparently scavenged by a childless songbird. The egg is covered with fine gold
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inlay, and ornamented in lapis lazuli and motherofpearl. Unlike most eggs, this one is

hinged and closed with a delicate looking clasp. The egg appears extremely fragile.

Inv: You are emptyhanded. Feedback: Up a Tree You are about 10 feet above the ground

nestled among some large branches. The nearest branch above you is above your reach.

Beside you on the branch is a small birds nest. In the birds nest is a large egg

encrusted with precious jewels, apparently scavenged by a childless songbird. The egg

is covered with fine gold inlay, and ornamented in lapis lazuli and motherofpearl.

Unlike most eggs, this one is hinged and closed with a delicate looking clasp. The egg

appears extremely fragile.

Template probs: west: 0.43, open OBJ: 0.18, go around OBJ: 0.074, east: 0.064, north:

0.063, south: 0.052, take OBJ: 0.041, put down OBJ: 0.023, down: 0.014, close OBJ:

0.009

Object probs: small: 0.213, window: 0.184, house: 0.116, egg: 0.068, white: 0.067, path:

0.062, branch: 0.042, kitche: 0.024, nest: 0.018, ground: 0.009

Interactive objects: nest, large, egg, ground, branches, all, branch, tree

Action: open nest

Score: 0

---

Obs: Desc: Up a Tree You are about 10 feet above the ground nestled among some large

branches. The nearest branch above you is above your reach. Beside you on the branch

is a small birds nest. In the birds nest is a large egg encrusted with precious jewels

, apparently scavenged by a childless songbird. The egg is covered with fine gold

inlay, and ornamented in lapis lazuli and motherofpearl. Unlike most eggs, this one is

hinged and closed with a delicate looking clasp. The egg appears extremely fragile.

You hear in the distance the chirping of a song bird. Inv: You are emptyhanded. You

hear in the distance the chirping of a song bird. Feedback: It is already open.

Template probs: west: 0.347, open OBJ: 0.182, go around OBJ: 0.085, east: 0.077, north:

0.073, south: 0.058, take OBJ: 0.045, put down OBJ: 0.026, down: 0.018, close OBJ:

0.013

Object probs: small: 0.213, window: 0.183, house: 0.117, egg: 0.068, white: 0.067, path:

0.062, branch: 0.042, kitche: 0.024, nest: 0.018, ground: 0.009

Interactive objects: nest, large, egg, ground, branches, all, branch, tree

Action: take egg

Score: 0

---

Obs: Desc: Up a Tree You are about 10 feet above the ground nestled among some large

branches. The nearest branch above you is above your reach. Beside you on the branch

is a small birds nest. Inv: You are carrying A jewelencrusted egg Feedback: Taken.

Template probs: down: 0.417, open OBJ: 0.181, go around OBJ: 0.074, east: 0.065, north:

0.063, south: 0.053, take OBJ: 0.042, put down OBJ: 0.025, down: 0.014, close OBJ:

0.01
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Object probs: small: 0.213, window: 0.184, house: 0.116, egg: 0.068, white: 0.067, path:

0.062, branch: 0.042, kitche: 0.024, nest: 0.018, ground: 0.009

Interactive objects: nest, large, egg, ground, branches, all, branch, tree

Action: down

Score: 5

---

Obs: Desc: Forest Path This is a path winding through a dimly lit forest. The path heads

northsouth here. One particularly large tree with some low branches stands at the edge

of the path. Inv: You are emptyhanded. Feedback: Forest Path

Template probs: south: 0.386, open OBJ: 0.358, east: 0.123, west: 0.06, north: 0.023, go

around OBJ: 0.014, blow out OBJ: 0.01, northwest: 0.009, throw OBJ at OBJ: 0.008

Object probs: window: 0.701, small: 0.299

Interactive objects: tree, path, branches, forest, large, all

Action: south

Score: 5

---

Obs: Desc: North of House You are facing the north side of a white house. There is no door

here, and all the windows are boarded up. To the north a narrow path winds through

the trees. Inv: You are emptyhanded. Feedback: North of House You are facing the north

side of a white house. There is no door here, and all the windows are boarded up. To

the north a narrow path winds through the trees.

Template probs: west: 0.502, open OBJ: 0.177, west: 0.147, north: 0.094, south: 0.035,

throw OBJ at OBJ: 0.012, go around OBJ: 0.012, northwest: 0.01, blow out OBJ: 0.005

Object probs: window: 0.724, small: 0.243, trap: 0.014, kitche: 0.009, rug: 0.003

Interactive objects: path, windows, narrow, white, house, all

Action: west

Score: 5

---

Obs: Desc: West of House You are standing in an open field west of a white house, with a

boarded front door. There is a small mailbox here. Inv: You are emptyhanded. Feedback:

Template probs: open OBJ: 0.536, south: 0.241, east: 0.121, west: 0.053, north: 0.015, go

around OBJ: 0.011, throw OBJ at OBJ: 0.007, blow out OBJ: 0.006, northwest: 0.005

Object probs: window: 0.7, small: 0.3

Interactive objects: boarded, small, front, door, white, mailbox, house, all

Action: open white

Score: 5

---

Obs: Desc: West of House You are standing in an open field west of a white house, with a

boarded front door. There is a small mailbox here. Inv: You are emptyhanded. Feedback:

I cant see how to get in from here.

Template probs: open OBJ: 0.339, east: 0.271, south: 0.215, west: 0.094, north: 0.031, go
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around OBJ: 0.013, blow out OBJ: 0.011, throw OBJ at OBJ: 0.01, northwest: 0.009

Object probs: window: 0.7, small: 0.299

Interactive objects: boarded, small, front, door, white, mailbox, house, all

Action: west

Score: 5

---

Obs: Desc: Forest This is a forest, with trees in all directions. To the east, there

appears to be sunlight. Inv: You are emptyhanded. Feedback: Forest This is a forest,

with trees in all directions. To the east, there appears to be sunlight.

Template probs: open OBJ: 0.49, south: 0.304, east: 0.116, west: 0.04, north: 0.016, go

around OBJ: 0.011, throw OBJ at OBJ: 0.006, northwest: 0.006, blow out OBJ: 0.006

Object probs: window: 0.7, small: 0.3

Interactive objects: forest, all, trees

Action: east

Score: 5

---

Obs: Desc: Forest Path This is a path winding through a dimly lit forest. The path heads

northsouth here. One particularly large tree with some low branches stands at the edge

of the path. Inv: You are emptyhanded. Feedback: Forest Path This is a path winding

through a dimly lit forest. The path heads northsouth here. One particularly large

tree with some low branches stands at the edge of the path.

Template probs: south: 0.386, open OBJ: 0.358, east: 0.123, west: 0.06, north: 0.023, go

around OBJ: 0.014, blow out OBJ: 0.01, northwest: 0.009, throw OBJ at OBJ: 0.008

Object probs: window: 0.701, small: 0.298

Interactive objects: tree, path, branches, forest, large, all

Action: open all

Score: 5

---

Obs: Desc: Forest Path This is a path winding through a dimly lit forest. The path heads

northsouth here. One particularly large tree with some low branches stands at the edge

of the path. Inv: You are emptyhanded. Feedback: Its not clear what youre referring

to.

Template probs: open OBJ: 0.331, south: 0.259, east: 0.24, west: 0.087, north: 0.031, go

around OBJ: 0.013, blow out OBJ: 0.011, northwest: 0.01, throw OBJ at OBJ: 0.009

Object probs: window: 0.701, small: 0.299

Interactive objects: tree, path, branches, forest, large, all

Action: east

Score: 5

---

Obs: Desc: Forest This is a dimly lit forest, with large trees all around. Inv: You are

emptyhanded. You hear in the distance the chirping of a song bird. Feedback: Forest

258



This is a dimly lit forest, with large trees all around. You hear in the distance the

chirping of a song bird.

Template probs: south: 0.38, open OBJ: 0.281, east: 0.174, west: 0.072, north: 0.034, go

around OBJ: 0.015, blow out OBJ: 0.013, northwest: 0.012, throw OBJ at OBJ: 0.008

Object probs: window: 0.7, small: 0.299

Interactive objects: forest, large, all, trees

Action: south

Score: 5

---

Obs: Desc: Clearing You are in a small clearing in a well marked forest path that extends

to the east and west. Inv: You are emptyhanded. Feedback: Clearing You are in a small

clearing in a well marked forest path that extends to the east and west.

Template probs: open OBJ: 0.451, east: 0.364, west: 0.164, north: 0.008, throw OBJ at OBJ:

0.005

Object probs: window: 0.592, small: 0.405, kitche: 0.002

Interactive objects: forest, path, all

Action: east

Score: 5

---

Obs: Desc: Canyon View You are at the top of the Great Canyon on its west wall. From here

there is a marvelous view of the canyon and parts of the Frigid River upstream. Across

the canyon, the walls of the White Cliffs join the mighty ramparts of the Flathead

Mountains to the east. Following the Canyon upstream to the north, Aragain Falls may

be seen, complete with rainbow. The mighty Frigid River flows out from a great dark

cavern. To the west and south can be seen an immense forest, stretching for miles

around. A path leads northwest. It is possible to climb down into the canyon from here

. Inv: You are emptyhanded. Feedback: Canyon View You are at the top of the Great

Canyon on its west wall. From here there is a marvelous view of the canyon and parts

of the Frigid River upstream. Across the canyon, the walls of the White Cliffs join

the mighty ramparts of the Flathead Mountains to the east. Following the Canyon

upstream to the north, Aragain Falls may be seen, complete with rainbow. The mighty

Frigid River flows out from a great dark cavern. To the west and south can be seen an

immense forest, stretching for miles around. A path leads northwest. It is possible to

climb down into the canyon from here.

Template probs: west: 0.444, take OBJ: 0.204, open OBJ: 0.147, blow out OBJ: 0.118, turn

on OBJ: 0.027, east: 0.026, down: 0.009, go around OBJ: 0.005, push OBJ: 0.004

Object probs: window: 0.693, small: 0.307

Interactive objects: path, walls, frigid, river, rainbow, wall, all

Action: west

Score: 5

---
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Obs: Desc: Forest This is a dimly lit forest, with large trees all around. Inv: You are

emptyhanded. Feedback: Forest This is a dimly lit forest, with large trees all around.

Template probs: south: 0.494, open OBJ: 0.241, east: 0.105, west: 0.053, north: 0.038, go

around OBJ: 0.018, northwest: 0.015, blow out OBJ: 0.014, throw OBJ at OBJ: 0.007,

down: 0.005

Object probs: window: 0.699, small: 0.301

Interactive objects: forest, large, all, trees

Action: south

Score: 5

---

Obs: Desc: Forest This is a dimly lit forest, with large trees all around. Inv: You are

emptyhanded. Feedback: Stormtossed trees block your way.

Template probs: east: 0.722, north: 0.067, west: 0.061, open OBJ: 0.061, south: 0.048,

blow out OBJ: 0.011, northwest: 0.01, go around OBJ: 0.007, throw OBJ at OBJ: 0.005

Object probs: window: 0.7, small: 0.3

Interactive objects: storm, forest, trees, large, all

Action: east

Score: 5

---

Obs: Desc: Forest This is a dimly lit forest, with large trees all around. Inv: You are

emptyhanded. Feedback: The rank undergrowth prevents eastward movement.

Template probs: south: 0.434, open OBJ: 0.339, east: 0.076, west: 0.065, north: 0.024, go

around OBJ: 0.02, northwest: 0.012, blow out OBJ: 0.011, throw OBJ at OBJ: 0.009

Object probs: window: 0.701, small: 0.299

Interactive objects: forest, large, all, trees

Action: jump

Score: 5

---

Obs: Desc: Forest This is a dimly lit forest, with large trees all around. Inv: You are

emptyhanded. Feedback: Wheeeeeeeeee!!!!! You hear in the distance the chirping of a

song bird.

Template probs: south: 0.438, open OBJ: 0.292, east: 0.098, west: 0.075, north: 0.03, go

around OBJ: 0.019, northwest: 0.013, blow out OBJ: 0.012, throw OBJ at OBJ: 0.01

Object probs: window: 0.7, small: 0.299

Interactive objects: forest, large, all, trees

Action: south

Score: 5

---

Obs: Desc: Forest This is a dimly lit forest, with large trees all around. Inv: You are

emptyhanded. Feedback: Stormtossed trees block your way.

Template probs: east: 0.694, west: 0.081, north: 0.07, open OBJ: 0.067, south: 0.043,
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northwest: 0.012, blow out OBJ: 0.011, go around OBJ: 0.007, throw OBJ at OBJ: 0.006

Object probs: window: 0.7, small: 0.3

Interactive objects: storm, forest, trees, large, all

Action: north

Score: 5

---

Obs: Desc: Clearing You are in a small clearing in a well marked forest path that extends

to the east and west. Inv: You are emptyhanded. Feedback: Clearing

Template probs: west: 0.437, east: 0.311, open OBJ: 0.171, north: 0.026, throw OBJ at OBJ:

0.015, south: 0.013, blow out OBJ: 0.011, go around OBJ: 0.006, northwest: 0.006

Object probs: window: 0.699, small: 0.301

Interactive objects: forest, path, all

Action: throw path at forest

Score: 5

---

Obs: Desc: Clearing You are in a small clearing in a well marked forest path that extends

to the east and west. Inv: You are emptyhanded. Feedback: You dont have the way.

Template probs: open OBJ: 0.377, west: 0.341, east: 0.149, south: 0.057, north: 0.022,

throw OBJ at OBJ: 0.018, blow out OBJ: 0.011, go around OBJ: 0.011, northwest: 0.008

Object probs: window: 0.7, small: 0.299

Interactive objects: forest, path, all

Action: west

Score: 5

---

Obs: Desc: Behind House You are behind the white house. A path leads into the forest to

the east. In one corner of the house there is a small window which is slightly ajar.

Inv: You are emptyhanded. Feedback: Behind House You are behind the white house. A

path leads into the forest to the east. In one corner of the house there is a small

window which is slightly ajar.

Template probs: open OBJ: 0.953, west: 0.036, south: 0.006

Object probs: small: 0.898, window: 0.102

Interactive objects: path, window, small, white, house, all

Action: open house

Score: 5

---

Obs: Desc: Behind House You are behind the white house. A path leads into the forest to

the east. In one corner of the house there is a small window which is slightly ajar.

Inv: You are emptyhanded. Feedback: The window is closed.

Template probs: open OBJ: 0.943, west: 0.047

Object probs: small: 0.88, window: 0.12

Interactive objects: path, window, small, white, house, all

261



Action: open path

Score: 5

---

Obs: Desc: Behind House You are behind the white house. A path leads into the forest to

the east. In one corner of the house there is a small window which is slightly ajar.

Inv: You are emptyhanded. Feedback: You must tell me how to do that to a way.

Template probs: open OBJ: 0.899, east: 0.048, west: 0.044, south: 0.004

Object probs: window: 0.58, small: 0.417, kitche: 0.002

Interactive objects: path, window, small, white, house, all

Action: open window

Score: 5

---

Obs: Desc: Behind House You are behind the white house. A path leads into the forest to

the east. In one corner of the house there is a small window which is open. Inv: You

are emptyhanded. Feedback: With great effort, you open the window far enough to allow

entry.

Template probs: west: 0.997

Object probs: small: 0.951, window: 0.049

Interactive objects: path, window, small, white, house, all

Action: west

Score: 5

---

Obs: Desc: Kitchen You are in the kitchen of the white house. A table seems to have been

used recently for the preparation of food. A passage leads to the west and a dark

staircase can be seen leading upward. A dark chimney leads down and to the east is a

small window which is open. On the table is an elongated brown sack, smelling of hot

peppers. A bottle is sitting on the table. The glass bottle contains A quantity of

water Inv: You are emptyhanded. Feedback: Kitchen You are in the kitchen of the white

house. A table seems to have been used recently for the preparation of food. A passage

leads to the west and a dark staircase can be seen leading upward. A dark chimney

leads down and to the east is a small window which is open. On the table is an

elongated brown sack, smelling of hot peppers. A bottle is sitting on the table. The

glass bottle contains A quantity of water

Template probs: take OBJ: 0.47, west: 0.351, turn on OBJ: 0.061, blow out OBJ: 0.052, down

: 0.023, open OBJ: 0.012, east: 0.008, close OBJ: 0.006, throw OBJ at OBJ: 0.006

Object probs: window: 0.683, small: 0.317

Interactive objects: kitchen, window, passage, staircase, glass, sack, water, small, table

, chimney, bottle, quantity, brown, all

Action: west

Score: 15

---
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Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a large oriental rug in the center of the room. Above the trophy

case hangs an elvish sword of great antiquity. A batterypowered brass lantern is on

the trophy case. Inv: You are emptyhanded. Feedback: Living Room You are in the living

room. There is a doorway to the east, a wooden door with strange gothic lettering to

the west, which appears to be nailed shut, a trophy case, and a large oriental rug in

the center of the room. Above the trophy case hangs an elvish sword of great antiquity

. A batterypowered brass lantern is on the trophy case.

Template probs: take OBJ: 0.454, west: 0.241, turn on OBJ: 0.107, open OBJ: 0.053, down:

0.05, blow out OBJ: 0.034, close OBJ: 0.016, throw OBJ at OBJ: 0.011, east: 0.009,

north: 0.005

Object probs: window: 0.685, small: 0.315

Interactive objects: elvish, strange, trophy, brass, wooden, rug, oriental, lettering,

antiquity, sword, gothic, west, door, large, lantern, case, all

Action: take brass

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a large oriental rug in the center of the room. Above the trophy

case hangs an elvish sword of great antiquity. Inv: You are carrying A brass lantern

Feedback: Taken.

Template probs: open OBJ: 0.48, push OBJ: 0.138, west: 0.088, take OBJ: 0.067, turn on OBJ

: 0.059, throw OBJ at OBJ: 0.031, put down OBJ: 0.023, put OBJ in OBJ: 0.018, put OBJ

on OBJ: 0.016, down: 0.015

Object probs: window: 0.685, small: 0.315

Interactive objects: elvish, strange, trophy, brass, wooden, rug, oriental, lettering,

antiquity, sword, gothic, west, door, large, lantern, case, all

Action: turn on brass

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a large oriental rug in the center of the room. Above the trophy

case hangs an elvish sword of great antiquity. Inv: You are carrying A brass lantern (

providing light) Feedback: The brass lantern is now on.

Template probs: open OBJ: 0.438, push OBJ: 0.141, west: 0.088, take OBJ: 0.081, turn on

OBJ: 0.061, throw OBJ at OBJ: 0.036, put down OBJ: 0.023, put OBJ in OBJ: 0.019, down:

0.018, put OBJ on OBJ: 0.018

Object probs: window: 0.685, small: 0.315
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Interactive objects: brass, strange, trophy, elvish, rug, oriental, light, lettering,

antiquity, sword, gothic, west, door, large, wooden, lantern, case, all

Action: take trophy

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a large oriental rug in the center of the room. Above the trophy

case hangs an elvish sword of great antiquity. Inv: You are carrying A brass lantern (

providing light) Feedback: The trophy case is securely fastened to the wall.

Template probs: open OBJ: 0.437, push OBJ: 0.141, west: 0.087, take OBJ: 0.082, turn on

OBJ: 0.061, throw OBJ at OBJ: 0.035, put down OBJ: 0.024, down: 0.019, put OBJ on OBJ:

0.018, put OBJ in OBJ: 0.018

Object probs: window: 0.684, small: 0.315

Interactive objects: strange, trophy, case, antiquity, lantern, lettering, sword, gothic,

wooden, wall, elvish, brass, west, rug, oriental, door, large, light, all

Action: push case

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a large oriental rug in the center of the room. Above the trophy

case hangs an elvish sword of great antiquity. Inv: You are carrying A brass lantern (

providing light) Feedback: Pushing the trophy case has no effect.

Template probs: open OBJ: 0.407, push OBJ: 0.145, take OBJ: 0.09, west: 0.085, turn on OBJ

: 0.062, throw OBJ at OBJ: 0.037, put down OBJ: 0.024, down: 0.021, put OBJ on OBJ:

0.019, put OBJ in OBJ: 0.019

Object probs: window: 0.686, small: 0.314

Interactive objects: elvish, strange, trophy, brass, wooden, rug, oriental, case,

lettering, antiquity, sword, gothic, west, door, large, lantern, light, all

Action: push lanter

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a large oriental rug in the center of the room. Above the trophy

case hangs an elvish sword of great antiquity. Inv: You are carrying A brass lantern (

providing light) Feedback: Pushing the brass lantern isnt notably helpful.

Template probs: open OBJ: 0.405, push OBJ: 0.144, west: 0.093, take OBJ: 0.089, turn on

OBJ: 0.062, throw OBJ at OBJ: 0.038, put down OBJ: 0.025, put OBJ on OBJ: 0.02, down:

0.019, put OBJ in OBJ: 0.019
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Object probs: window: 0.685, small: 0.315

Interactive objects: brass, strange, trophy, elvish, rug, oriental, light, lettering,

antiquity, sword, gothic, west, door, large, wooden, lantern, case, all

Action: open wooden

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a large oriental rug in the center of the room. Above the trophy

case hangs an elvish sword of great antiquity. Inv: You are carrying A brass lantern (

providing light) Feedback: The door cannot be opened.

Template probs: open OBJ: 0.438, push OBJ: 0.142, take OBJ: 0.081, west: 0.08, turn on OBJ

: 0.062, throw OBJ at OBJ: 0.035, put down OBJ: 0.024, down: 0.02, put OBJ in OBJ:

0.018, put OBJ on OBJ: 0.018

Object probs: window: 0.685, small: 0.315

Interactive objects: elvish, strange, trophy, brass, wooden, rug, oriental, case,

lettering, antiquity, sword, gothic, west, door, large, lantern, light, all

Action: open brass

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a large oriental rug in the center of the room. Above the trophy

case hangs an elvish sword of great antiquity. Inv: You are carrying A brass lantern (

providing light) Feedback: You must tell me how to do that to a brass lantern.

Template probs: open OBJ: 0.503, push OBJ: 0.129, west: 0.1, take OBJ: 0.053, turn on OBJ:

0.051, throw OBJ at OBJ: 0.041, put down OBJ: 0.029, put OBJ in OBJ: 0.021, put OBJ

on OBJ: 0.02, down: 0.009

Object probs: window: 0.677, small: 0.323

Interactive objects: brass, strange, trophy, elvish, rug, oriental, light, lettering,

antiquity, sword, gothic, west, door, large, wooden, lantern, case, all

Action: push rug

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an

elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: With a great effort, the rug is moved to one side of the room,

revealing the dusty cover of a closed trap door.

Template probs: open OBJ: 0.582, push OBJ: 0.082, down: 0.074, take OBJ: 0.065, put down
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OBJ: 0.025, turn on OBJ: 0.025, west: 0.023, close OBJ: 0.021, throw OBJ at OBJ:

0.019, put OBJ in OBJ: 0.016

Object probs: window: 0.674, small: 0.326

Interactive objects: dusty, strange, trophy, cover, case, antiquity, lantern, lettering,

sword, gothic, wooden, elvish, brass, west, rug, trap, door, light, all

Action: west

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an

elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: The door is nailed shut.

Template probs: open OBJ: 0.679, push OBJ: 0.073, down: 0.057, take OBJ: 0.046, put down

OBJ: 0.022, turn on OBJ: 0.019, west: 0.017, close OBJ: 0.015, throw OBJ at OBJ:

0.015, put OBJ in OBJ: 0.015

Object probs: window: 0.672, small: 0.328

Interactive objects: elvish, strange, trophy, brass, case, lettering, antiquity, sword,

gothic, west, door, trap, wooden, lantern, light, all

Action: down

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an

elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: The trap door is closed.

Template probs: open OBJ: 0.63, down: 0.087, take OBJ: 0.06, put down OBJ: 0.045, push OBJ

: 0.04, west: 0.027, turn on OBJ: 0.02, close OBJ: 0.018, throw OBJ at OBJ: 0.018, put

OBJ in OBJ: 0.015

Object probs: window: 0.657, small: 0.342

Interactive objects: elvish, strange, trophy, brass, case, lettering, antiquity, sword,

gothic, west, trap, door, wooden, lantern, light, all

Action: open sword

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an

elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: You must tell me how to do that to a sword.
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Template probs: open OBJ: 0.625, down: 0.075, take OBJ: 0.053, push OBJ: 0.05, put down

OBJ: 0.049, west: 0.028, turn on OBJ: 0.021, throw OBJ at OBJ: 0.02, close OBJ: 0.019,

put OBJ in OBJ: 0.018

Object probs: window: 0.659, small: 0.34

Interactive objects: elvish, strange, trophy, brass, case, lettering, antiquity, sword,

gothic, west, door, trap, wooden, lantern, light, all

Action: open case

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an

elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: Opened.

Template probs: open OBJ: 0.61, down: 0.081, take OBJ: 0.056, push OBJ: 0.053, put down

OBJ: 0.049, west: 0.029, turn on OBJ: 0.023, throw OBJ at OBJ: 0.02, put OBJ in OBJ:

0.019, close OBJ: 0.019

Object probs: window: 0.659, small: 0.341

Interactive objects: elvish, strange, trophy, brass, case, lettering, antiquity, sword,

gothic, west, door, trap, wooden, lantern, light, all

Action: open door

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an

elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: Which door do you mean, the wooden door or the trap door?

Template probs: open OBJ: 0.552, down: 0.085, take OBJ: 0.062, put down OBJ: 0.06, push

OBJ: 0.055, west: 0.04, turn on OBJ: 0.026, throw OBJ at OBJ: 0.026, put OBJ in OBJ:

0.024, close OBJ: 0.021

Object probs: window: 0.66, small: 0.33

Interactive objects: elvish, strange, trophy, brass, case, lettering, antiquity, sword,

gothic, west, trap, door, wooden, lantern, light, all

Action: open all

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an

elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing
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light) Feedback: You cant use multiple direct objects with "open".

Template probs: open OBJ: 0.529, down: 0.086, put down OBJ: 0.065, take OBJ: 0.063, push

OBJ: 0.059, west: 0.044, throw OBJ at OBJ: 0.028, turn on OBJ: 0.028, put OBJ in OBJ:

0.026, close OBJ: 0.021

Object probs: window: 0.661, small: 0.339

Interactive objects: elvish, strange, trophy, brass, case, lettering, antiquity, sword,

gothic, west, door, trap, wooden, lantern, light, all

Action: down

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an

elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: The trap door is closed.

Template probs: open OBJ: 0.569, down: 0.089, take OBJ: 0.063, put down OBJ: 0.059, push

OBJ: 0.048, west: 0.036, turn on OBJ: 0.024, throw OBJ at OBJ: 0.024, put OBJ in OBJ:

0.021, close OBJ: 0.021

Object probs: window: 0.658, small: 0.341

Interactive objects: elvish, strange, trophy, brass, case, lettering, antiquity, sword,

gothic, west, trap, door, wooden, lantern, light, all

Action: shake gothic

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an

elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: You dont have the wooden door.

Template probs: open OBJ: 0.62, push OBJ: 0.085, take OBJ: 0.055, down: 0.053, west:

0.031, put down OBJ: 0.026, turn on OBJ: 0.025, throw OBJ at OBJ: 0.02, put OBJ in OBJ

: 0.019, close OBJ: 0.014

Object probs: window: 0.668, small: 0.332

Interactive objects: elvish, strange, trophy, brass, case, lettering, antiquity, sword,

gothic, west, door, trap, wooden, lantern, light, all

Action: open west

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an
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elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: The door cannot be opened.

Template probs: open OBJ: 0.648, push OBJ: 0.089, down: 0.053, take OBJ: 0.042, west:

0.025, turn on OBJ: 0.025, put down OBJ: 0.024, throw OBJ at OBJ: 0.021, put OBJ in

OBJ: 0.02, close OBJ: 0.013

Object probs: window: 0.665, small: 0.335

Interactive objects: elvish, strange, trophy, brass, case, lettering, antiquity, sword,

gothic, west, door, trap, wooden, lantern, light, all

Action: open wooden

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an

elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: The door cannot be opened.

Template probs: open OBJ: 0.637, push OBJ: 0.081, down: 0.058, take OBJ: 0.05, put down

OBJ: 0.024, west: 0.024, turn on OBJ: 0.024, close OBJ: 0.019, throw OBJ at OBJ:

0.017, put OBJ in OBJ: 0.016

Object probs: window: 0.671, small: 0.329

Interactive objects: elvish, strange, trophy, brass, case, lettering, antiquity, sword,

gothic, west, door, trap, wooden, lantern, light, all

Action: push sword

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an

elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: Pushing the sword doesnt seem to work.

Template probs: open OBJ: 0.591, push OBJ: 0.085, down: 0.073, take OBJ: 0.061, turn on

OBJ: 0.025, put down OBJ: 0.024, west: 0.024, close OBJ: 0.02, throw OBJ at OBJ:

0.019, put OBJ in OBJ: 0.017

Object probs: window: 0.674, small: 0.326

Interactive objects: elvish, strange, trophy, brass, case, lettering, antiquity, sword,

gothic, west, door, trap, wooden, lantern, light, all

Action: open strang

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut
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, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an

elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: The door cannot be opened.

Template probs: open OBJ: 0.614, push OBJ: 0.085, down: 0.065, take OBJ: 0.059, west:

0.024, turn on OBJ: 0.024, put down OBJ: 0.021, close OBJ: 0.017, throw OBJ at OBJ:

0.017, put OBJ in OBJ: 0.016

Object probs: window: 0.676, small: 0.323

Interactive objects: elvish, strange, trophy, brass, case, lettering, antiquity, sword,

gothic, west, door, trap, wooden, lantern, light, all

Action: down

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a closed trap door at your feet. Above the trophy case hangs an

elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: The trap door is closed.

Template probs: open OBJ: 0.665, down: 0.068, push OBJ: 0.052, take OBJ: 0.044, put down

OBJ: 0.036, west: 0.026, turn on OBJ: 0.02, throw OBJ at OBJ: 0.018, put OBJ in OBJ:

0.017, close OBJ: 0.015

Object probs: window: 0.661, small: 0.339

Interactive objects: elvish, strange, trophy, brass, case, lettering, antiquity, sword,

gothic, west, trap, door, wooden, lantern, light, all

Action: open trap

Score: 15

---

Obs: Desc: Living Room You are in the living room. There is a doorway to the east, a

wooden door with strange gothic lettering to the west, which appears to be nailed shut

, a trophy case, and a rug lying beside an open trap door. Above the trophy case hangs

an elvish sword of great antiquity. Inv: You are carrying A brass lantern (providing

light) Feedback: The door reluctantly opens to reveal a rickety staircase descending

into darkness.

Template probs: down: 0.876, open OBJ: 0.046, take OBJ: 0.018, east: 0.013, close OBJ:

0.009, put down OBJ: 0.007, north: 0.006

Object probs: window: 0.604, small: 0.387, kitche: 0.006, trap: 0.003

Interactive objects: elvish, strange, trophy, brass, rug, staircase, case, lettering,

antiquity, sword, gothic, west, door, trap, wooden, lantern, light, all

Action: down

Score: 15

---

Obs: Desc: It is pitch black. You are likely to be eaten by a grue. Inv: You are carrying
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A brass lantern Feedback: You have moved into a dark place. It is pitch black. You are

likely to be eaten by a grue.

Template probs: take OBJ: 0.141, turn on OBJ: 0.14, open OBJ: 0.122, down: 0.117, close

OBJ: 0.073, put down OBJ: 0.069, west: 0.065, push OBJ: 0.056, throw OBJ at OBJ:

0.054, south: 0.02

Object probs: lanter: 0.076, letter: 0.071, window: 0.061, door: 0.059, small: 0.052,

gothic: 0.049, sword: 0.049, rug: 0.037, trophy: 0.035, west: 0.031

Interactive objects: brass, dark, lantern, black, all, grue

Action: down

Score: 40

---

Obs: Desc: It is pitch black. You are likely to be eaten by a grue. Inv: You are carrying

A brass lantern Feedback: The chasm probably leads straight to the infernal regions.

Template probs: turn on OBJ: 0.167, take OBJ: 0.132, open OBJ: 0.125, down: 0.124, close

OBJ: 0.076, push OBJ: 0.067, put down OBJ: 0.066, throw OBJ at OBJ: 0.056, west: 0.05,

south: 0.024

Object probs: lanter: 0.077, letter: 0.071, window: 0.06, door: 0.059, small: 0.051,

gothic: 0.05, sword: 0.049, rug: 0.037, trophy: 0.035, west: 0.031

Interactive objects: brass, chasm, lantern, black, all, grue

Action: turn on lanter

Score: 40

---

Obs: Desc: Cellar You are in a dark and damp cellar with a narrow passageway leading north

, and a crawlway to the south. On the west is the bottom of a steep metal ramp which

is unclimbable. There is a suspiciouslooking individual, holding a large bag, leaning

against one wall. He is armed with a deadly stiletto. Inv: You are carrying A brass

lantern (providing light) Feedback: You try to ascend the ramp, but it is impossible,

and you slide back down.

Template probs: down: 0.246, open OBJ: 0.209, take OBJ: 0.122, close OBJ: 0.1, push OBJ:

0.082, turn on OBJ: 0.068, put down OBJ: 0.033, south: 0.029, west: 0.019, throw OBJ

at OBJ: 0.016

Object probs: west: 0.08, small: 0.08, window: 0.073, door: 0.067, rug: 0.057, letter:

0.047, wooden: 0.045, gothic: 0.041, strang: 0.035, lanter: 0.034

Interactive objects: light, ramp, large, brass, stiletto, crawlway, dark, narrow, lantern,

bag, suspicious, metal, all, wall, passageway

Action: take dark

Score: 40

---

Obs: Desc: Cellar You are in a dark and damp cellar with a narrow passageway leading north

, and a crawlway to the south. On the west is the bottom of a steep metal ramp which

is unclimbable. There is a suspiciouslooking individual, holding a large bag, leaning
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against one wall. He is armed with a deadly stiletto. Inv: You are carrying A brass

lantern (providing light) Feedback: You cant be serious.

Template probs: down: 0.289, open OBJ: 0.201, take OBJ: 0.103, close OBJ: 0.091, turn on

OBJ: 0.066, push OBJ: 0.065, put down OBJ: 0.043, throw OBJ at OBJ: 0.022, south:

0.021, west: 0.018

Object probs: west: 0.081, small: 0.076, window: 0.069, door: 0.068, rug: 0.057, letter:

0.048, wooden: 0.045, gothic: 0.042, strang: 0.036, lanter: 0.035

Interactive objects: light, ramp, large, brass, stiletto, crawlway, dark, narrow, lantern,

bag, suspicious, metal, all, wall, passageway

Action: put out passag

Score: 40

---

Obs: Desc: Cellar You are in a dark and damp cellar with a narrow passageway leading north

, and a crawlway to the south. On the west is the bottom of a steep metal ramp which

is unclimbable. There is a suspiciouslooking individual, holding a large bag, leaning

against one wall. He is armed with a deadly stiletto. The thief, finding nothing of

value, left disgusted. Inv: You are carrying A brass lantern (providing light) The

thief, finding nothing of value, left disgusted. Feedback: Pushing the chute isnt

notably helpful. Someone carrying a large bag is casually leaning against one of the

walls here. He does not speak, but it is clear from his aspect that the bag will be

taken only over his dead body.

Template probs: open OBJ: 0.211, take OBJ: 0.205, push OBJ: 0.188, south: 0.132, west:

0.105, close OBJ: 0.057, turn on OBJ: 0.026, go around OBJ: 0.02, east: 0.017, down:

0.016

Object probs: small: 0.112, window: 0.103, west: 0.075, door: 0.063, rug: 0.054, wooden:

0.044, letter: 0.04, gothic: 0.037, strang: 0.032, kitche: 0.031

Interactive objects: light, ramp, large, brass, stiletto, crawlway, walls, dark, narrow,

thief, lantern, chute, bag, suspicious, metal, all, wall, passageway

Action: west

Score: 40

---

Obs: Desc: Cellar You are in a dark and damp cellar with a narrow passageway leading north

, and a crawlway to the south. On the west is the bottom of a steep metal ramp which

is unclimbable. There is a suspiciouslooking individual, holding a large bag, leaning

against one wall. He is armed with a deadly stiletto. A quick thrust pinks your left

arm, and blood starts to trickle down. Inv: You are carrying A brass lantern (

providing light) The thief, finding nothing of value, left disgusted. Feedback: You

dont have the way.

Template probs: take OBJ: 0.246, open OBJ: 0.211, push OBJ: 0.19, south: 0.091, west:

0.082, close OBJ: 0.059, turn on OBJ: 0.041, down: 0.026, go around OBJ: 0.017, east:

0.012
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Object probs: small: 0.097, window: 0.087, west: 0.078, door: 0.065, rug: 0.056, wooden:

0.045, letter: 0.043, gothic: 0.038, strang: 0.034, lanter: 0.032

Interactive objects: light, ramp, large, brass, stiletto, crawlway, dark, narrow, lantern,

bag, suspicious, metal, all, wall, passageway

Action: south

Score: 40

---

Obs: Desc: East of Chasm You are on the east edge of a chasm, the bottom of which cannot

be seen. A narrow passage goes north, and the path you are on continues to the east.

Inv: You are carrying A brass lantern (providing light) Feedback: The brass lantern is

now on. East of Chasm You are on the east edge of a chasm, the bottom of which cannot

be seen. A narrow passage goes north, and the path you are on continues to the east.

Template probs: put down OBJ: 0.132, take OBJ: 0.116, east: 0.1, open OBJ: 0.093, close

OBJ: 0.09, turn on OBJ: 0.07, throw OBJ at OBJ: 0.061, west: 0.059, push OBJ: 0.057,

down: 0.042

Object probs: window: 0.074, small: 0.057, lanter: 0.046, sword: 0.041, gothic: 0.034,

wooden: 0.031, letter: 0.03, bottle: 0.03, door: 0.028, large: 0.028

Interactive objects: light, brass, chasm, path, narrow, lantern, passage, all

Action: east

Score: 40

---

Obs: Desc: Gallery This is an art gallery. Most of the paintings have been stolen by

vandals with exceptional taste. The vandals left through either the north or west

exits. Fortunately, there is still one chance for you to be a vandal, for on the far

wall is a painting of unparalleled beauty. Inv: You are emptyhanded. Feedback: Gallery

This is an art gallery. Most of the paintings have been stolen by vandals with

exceptional taste. The vandals left through either the north or west exits.

Fortunately, there is still one chance for you to be a vandal, for on the far wall is

a painting of unparalleled beauty.

Template probs: open OBJ: 0.42, west: 0.377, take OBJ: 0.063, blow out OBJ: 0.039, east:

0.026, push OBJ: 0.02, down: 0.016, go around OBJ: 0.01, north: 0.008, turn on OBJ:

0.006

Object probs: window: 0.701, small: 0.299

Interactive objects: art, painting, wall, all, paintings

Action: open painti

Score: 40

---

Obs: Desc: Gallery This is an art gallery. Most of the paintings have been stolen by

vandals with exceptional taste. The vandals left through either the north or west

exits. Fortunately, there is still one chance for you to be a vandal, for on the far

wall is a painting of unparalleled beauty. Inv: You are emptyhanded. Feedback: You
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must tell me how to do that to a painting.

Template probs: open OBJ: 0.41, west: 0.33, take OBJ: 0.106, push OBJ: 0.033, blow out OBJ

: 0.032, down: 0.023, turn on OBJ: 0.015, east: 0.014, go around OBJ: 0.01, south:

0.006

Object probs: window: 0.701, small: 0.299

Interactive objects: art, painting, wall, all, paintings

Action: take painti

Score: 40

---

Obs: Desc: Gallery This is an art gallery. Most of the paintings have been stolen by

vandals with exceptional taste. The vandals left through either the north or west

exits. Inv: You are carrying A painting Feedback: Taken.

Template probs: open OBJ: 0.492, push OBJ: 0.296, take OBJ: 0.036, west: 0.033, turn on

OBJ: 0.032, throw OBJ at OBJ: 0.021, down: 0.015, close OBJ: 0.013, put down OBJ:

0.011, put OBJ in OBJ: 0.01

Object probs: window: 0.698, small: 0.302

Interactive objects: art, painting, all, paintings

Action: open art

Score: 44

---

B.4 LIGHT-Quests

Mechanical Turk Data Collection

Crowdworkers are required to first pass an on-boarding test before they are allowed to

perform the actual task. Figures B.5, B.6, B.7, B.8, and B.9 describe first the instructions

given to the crowdworkers and then 4 phases of the on-boarding test. I paid workers $2.75

per task. This amount was determined by first running the task ourselves to estimate a

completion time of 10-12 minutes per task, and then running pilot tasks that confirmed the

average task duration for workers was close to 10 minutes.

Figure B.10 shows the example of the actual task given to the crowdworkers and Fig-

ure B.11 shows the user interface for the first phase of the LIGHT-Quests data collection

task.
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Figure B.5: On-boarding test instructions.

Figure B.6: Phase 1 of the on-boarding test.
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Figure B.7: Phase 2 of the on-boarding test.
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Figure B.8: Phase 3 of the on-boarding test.

Figure B.9: Phase 4 of the on-boarding test.
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Figure B.10: Example for the first phase of the LIGHT-Quests data collection task given to
the crowdworkers.
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Figure B.11: User interface for the first phase of the LIGHT-Quests data collection task.
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B.4.1 Human Demonstration Collection

In order to collect the human completions of quests in the LIGHT environment, I created

a game setup where humans could interact with models while playing LIGHT characters

in LIGHT settings. I trained a ranking dialogue model on the utterances in the LIGHT

dataset.

Using this, players could now assume the role of a LIGHT character and interact with

the model. In order to try to control for quality of the quest completions, I used the same

ranking model to rank the scores of the player in the dialogues. Players who gave responses

that the model ranked as likely candidates would receive more points.

Only after scoring enough cumulative points were players allowed to try completing

quests. The quest setup was a slight variation of the conversation setup. First, the player

was given one of the collected quest scenarios rather than just a chat setup. Players receiv-

ing a quest would be provided with one of the motivations alongside their persona.

In the dialogue that followed, players were given the chance to take action after enough

in-character dialogue turns. If the player took the correct action, they were awarded with

more points to confirm they completed their given quest.

B.4.2 Examples

I present 3 randomly selected examples of quests and corresponding human demonstra-

tions.

B.4.3 Training and Hyperparameters

Table B.1 gives details on hyperparameters used to train the poly-encoders. Encoders were

trained until validation accuracy across all the tasks did not improve for 5 epochs or 24 wall

clock hours on a machine with 8 V100 GPUs.

Table B.2 has the hyperparameters used in the RL experiments. Loss coefficients are

separated by action and speech types, note that the ratio between the loss coefficients
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Setting You are in the swamp. The swamp is glowing with wonder and color. There are parts that range from dark red to bright
yellow. People often visit here to speak with the gods and claim it can be both harmful to those it dislikes and healing
to those who it deems worthy. There’s a pit of quicksand and a swamp flower here. A witch is here.

Partner: Witch.
Persona I grew up in a nearby village, and was exiled when it was found that I had special abilities. My parents were ostracized

as well. Since then, I’ve been on my own, but could never quite let go of my family.
Carrying Nothing.
Wielding gold necklace, robe, knife, staff
Self: Swamp monster.

Persona I am a swamp monster of the bog. I eat people. I swim around.
Carrying Nothing.
Wielding stick, rock
Motivations: Timeline:
Short I need some thick foliage to begin construction of my con-

cealed swamp hut.
-2 hours go to swamp

-15 min eat people
-10 min follow princess

Now get impassable vegetation from pit of quicksand
Mid I will completely camouflage my swamp hut, so that the

King’s men won’t be able to drive me out even further
from the castle.

+15 min use impassable vegetation with swamp hut

Long I must live close to the castle, so that I can take the
princess away from the evil King.

+1 hours follow king

+2 hours follow princess

What are you doing here witch? GET OUT OF MY SWAMP

I was taken from my family when I was 8 and I need to get out of here! Can you assist me?

Help? HA! I help no one but myself. Speaking of...you look rather plump and tasty witch

Plump?! I’m healthy. I’ll tear you up then and make scraps. You watch.

get impassable vegetation from pit of quicksand
You would make a great addition to my stew

It’s going to just be gross!

drop impassable vegetation
Get out of my way so I can make my hut. Can’t a swamp monster get any peace around here?!

I’ll help you, but only so you won’t eat me!

That’s it, you’re coming with me!
get impassable vegetation

I don’t trust you. Get off of me!

Table B.1: Hyperparameters used to train all poly-encoders in the supervised experiments.
All models have 256 million total parameters. The same trained models were then frozen
and used for the RL experiments.

Hyperparameter type Value
Dictionary Tokenizer Byte-pair encoding
Num. layers 12
Num. attention heads 12
Feedforward network hidden size 3072
Input length 1024
Embedding size 768
Batch size 32
Dropout ratio 0.1
Poly-n-codes 64
Gradient clip 1.0
Optimizer Adam
Learning rate 1× 10−6

matches the ratio between the sizes of the action spaces. RL experiments were performed

on a machine with 8 V100 GPUs for 1 million environment interactions for each actor in a
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Setting This is the hidden workshop of the most powerful wizard in the land. There are ornate tapestries on the walls depicting
wizards using their powers and potions in battle. Mordak, the wizard, constructed this powerful workshop after the
death of the most famous king, Henry of Silverton. Any who enter here immediately become enchanted with the
wizard’s power, giving them advanced healing powers. There’s a tapestry, a potion, and a tome here. The wizard is
here.

Partner: Wizard.
Persona I am a wizard who develops my own spells. Most of them aren’t particularly effective spells, but I’m curious about all

the magical possibilities. People are afraid to participate in my experiments.
Carrying Nothing.
Self: Apprentice.
Persona I am your apprentice. Please tell me what I can help you with. I will cook and serve your meals. I will clean the castle.

I can do anything you ask. You have hired me to make your life easier.
Carrying Nothing.
Motivations: Timeline:
Short I need to get the tapestry to clean it. -2 hours get hired from wizard

-15 min go to secret magician’s workshop
Now get tapestryMid I need to make this workshop suitable for the wizard. +5 min wield tool

+10 min hit tapestry
Long I was hired to keep this place cleaned and in perfect condition for the

wizard.
+30 min put tapestry in wall

+4 hours drop tool

Good day Ser Wizard. Your tower is decorated with beautiful tapestries, though their colors appear to be dulled due to dust. May I
take it and clean it?

Why not, it is infused isn’t it. Just don’t be waving it around this room, it might get dangrous

Of course, I will handle it with the utmost care.

How long have you been an apprentice?

get tapestry
3 years Ser. I’m hoping to learn to be a wizard or to become a knight. Or both! Wouldn’t that be grand?

How wonderful. What encouraged you to pursue it?

Curiosity mostly. I hope to make the world a better place, and one of the best ways to do that is vanquishing evil

What got you into that occupation then? I was born with affinity for magic so it was my calling.

hug wizard
As I said, curiosity. I am a high born boy, the third son, so I cannot inherit my father’s lands. So I must make my mark on the world
another way

You are well suited to it and I am sure your parents are proud of you.

batch of 32.

B.4.4 Switch Type Ablations

The second set of results involve ablating having a learned switch that uses the input train-

ing data and a hardcoded switch- The learned switch is as described in Chapter 7: it outputs

an action every k dialogue utterances; where during training k is chosen to match the ratio

of utterances to actions on that particular quest from the human demonstrations, and during

testing, k is chosen to match the average action to utterance ratio. The hardcoded switch is

where the agent outputs an action chosen every N steps across all quests—here N = 3 is

the chosen hyperparameter. Table B.3 shows that having a learned switch increases zero-
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Setting You are in the The Queen’s Chamber. This is a beautiful room inside of the palace that is decorated with the finest
silk and velvet. The color scheme used represents royalty, royal blue, red, green and purple. The walls are covered in
gold and in each corner of the room are golden statues of Greek art. The floors are covered in marble, and despite the
patterns, shine so brightly you can even see your own reflection in them! There’s also a bed big enough to fit five people
on! There’s two statues, an a bed big, a the finest silk and velvet, an a bed, and a finest silk and velvet here. The butler
is here.

Partner: Butler.
Persona I serve my masters quietly. I know all the secrets of the elite but will never tell a soul. I have lived in this home since I

was 12.
Carrying Nothing.
Self: Jester.
Persona I am the fun guy. I like to entertain others in the village. I am the local jester.

Carrying Nothing.
Motivations: Timeline:
Short I want to hug the butler to cheer him up. -2 hours wear Jester’s Hat

-30 min go Queen’s Tower
-5 min follow the butler

Now hug the butler
Mid I need to cheer him up because the Queen has just chastised him for dirtying the

marble floors.
+5 min go dining hall

+10 min get beef stew
Long It is my job to cheer up courtiers who are unhappy, and I will lose my home in the

kingdom if I don’t cheer them up!
+4 hours give beef stew to butler

Why hello there Butler my man

Hello jester! I’m happy to see you, since I hate my life.

Why so down with the life feels huh

I can’t complain (because the king will punish me) everyone wishes they could be the king.

hug butler

I appreciate the kind words, dear jester.

I’m here for ya. To cheer you up

That is kind of you, not everyone has liked me here, I am the queen’s least favorite person.

Well I like you much more than the queen.

shot generalization performance and Figures B.12, B.13 show that having a learned switch

improves sample efficiency by enabling the LIGHT agent to reach asymptotic performance

in fewer steps in both the Scratch and Adaptive models.
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Figure B.12: Switch Types Reward Curves for the Scratch Model averaged over 3 indepen-
dent runs.
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Table B.2: RL experiments hyperparameters. All pre-training encoder hyperparameters are
as found earlier in Table B.1.

Hyperparameter type Value
General
Discount γ 0.99
Valid Action loss coefficient 10
Action entropy coefficient 0.01
Valid Speech loss coefficient 40
Speech entropy coefficient 0.04
Batch size 32
Gradient clip 1.0
Steps per episode 100
Policy Networks (Actors)
Num. Layers 3
Feedforward network hidden size 768
GRU hidden size 768
Value Predictor (Critic)
Num. Layers 2
Feedforward network hidden size 768
Appended Encoder
Num. layers 3
Num. attention heads 3
Feedforward network hidden size 768

Table B.3: Encoder Type RL Zero-Shot Evaluations averaged over 3 independent runs.
Act goals and speech goals are as described in Chapter 7. Standard deviations for all
experiments are less than 0.01. The “Act & Speech Goals” column refers to quests where
the agent has simultaneously achieved both types of goals within the allotted one episode.

Model Reinforcement Learning
Act Goals Speech Goals Act & Speech Goals

Scratch 0.418 0.118 0.103
Hardcoded Switch 0.295 0.0947 0.066

Adaptive 0.42 0.33 0.303
Hardcoded Switch 0.274 0.294 0.236
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Figure B.13: Switch Types Reward Curves for the Adaptive Model averaged over 3 inde-
pendent runs.
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B.4.5 Self Act Completion Transcripts

I pick 3 transcripts of the LIGHT agent playing the quests. Each of these transcripts are

from the Adaptive model on the test set of human demonstrations during zero-shot evalua-

tions. I pick samples where the agent achieves the act goal itself and also simultaneously

achieves the speech goal. The blue and right aligned text is the LIGHT agent trained with

RL and the gray and left aligned text is the partner agent.

Setting The fishing store is a small one room stone building with wares laid about on tables. One can see fishing poles,
wooden buckets with dirt and bait inside, along with some mounted trophies, and a skeleton.

Partner: Fish seller.
Persona I sell fish in the kingdom. I usually perch on the high seas. I catch thousands of fish each year.

Carrying fish
Self: Mermaid hunter.

Persona I am a fierce hunter. I bring down mermaids. I spend most of my time on the high seas.
Carrying crossbow, skeleton, coins

Motivation I will hit the fish seller to remind them who I am.

I’ll get them!!

follow fish seller

hit mermaid hunter

That’s it! I am going to eat you. Say your last words.

hug mermaid hunter

Do you see these skeletons I am carrying? They are mermaids I’ve already devoured!

get skeleton

Get away from my skeletons! The bones are my trophy!

give skeleton to mermaid hunter

It is all your fault my last mermaid got away!

And you are a simpleton, just take this fish. I do not even care about payment.

I DONT WANT YOUR DAMN FISH

get coins from fist

hit fish seller
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Setting The king’s bedroom. The walls are tall and stone. They are coated with colorful tapestries showing the kings of years
past. A large stone fireplace across from the bed that is large enough to keep the king warm even on the coldest nights.
A double thick wooden door with a large lock on each side of the room.

Partner: Royal dog.
Persona I am the royal dog, fat, incontinent, and lazy. I eat off my own porcelain plate, when I am not hand fed by the queen.

I pee where I like. I stole food from the poor when I was young, but I cannot waddle up to them fast enough these
days. I sleep between the royal couple.

Carrying Nothing.
Self: Queen.

Persona I was the daughter of a high ranking nobleman overseas. To make a trade alliance with the King, my parents offered
me in marriage. It wasn’t my idea, but it has turned out very well. I’ve produced two living sons as heirs, and the king
treats me kindly. I spend my time doing embroidery and talking with my ladies in waiting.

Carrying Nothing.
Motivation I want to get to the large stone fireplace.

I am having turbulent thoughts regarding my faith and own morality.

I want to jump into the fireplace.

Don’t, lets go to the fireplace and sit.

I go to fireplace.

get large stone fireplace
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Setting The sheriff’s office is a small building on the southern edge of the farm. There is a desk with decrees from the king
and other papers strewn about. Hanging on the wall are swords and other weapons. The room is small and cluttered,
with various books and other things strewn about. There is a guard here.

Partner: Lawyer.
Persona I am a very good lawyer. I always win in my cases. I would like to work as a district attorney.

Carrying Nothing.
Self: Sheriff.

Persona I keep our town safe. I make sure to check the caravans for bandits. If the King needs anything extra hands in the
kingdom he can count on me.

Carrying Nothing.
Motivation I want to remove the shield and hit the lawyer with it.

Next time I’ll hit you with this shield! Tell the truth, it was you that went after the king! I don’t buy the frame story. No matter how
good a lawyer you are. You aren’t fooling me!

get shield

remove knife

Hahahahaha. I’m off, don’t like to fight! You are a fool sheriff. I can run faster than you can ever imagine.

follow lawyer

This is my shield now! Goodbye! I’m off.

Stop!!

put shield on large and well stocked wine rack

get shield from large and well stocked wine rack

hug sheriff

hit lawyer

Goodbye.

Alright, lawyer. You may go now.

B.4.6 Partner Act Completion Transcripts

Similarly to the previous section, these transcripts are from the Adaptive model on the test

set of human demonstrations during zero-shot evaluations. I pick samples where the act

goal is achieved via the partner and the agent simultaneously achieves the speech goal

itself. The blue and right aligned text is the LIGHT agent trained with RL and the gray and

left aligned text is the partner agent.

287



Setting Up at the top of the tower, among the gray clouds, is the prison room. The room is round, with a circumference
of about 15 feet. The walls are barren and made of stone; only one barred window gives a view out onto the vast
landscape. A small bed and a dirty wooden bucket are the only decorations. The desolate fairy spends day and night
laying on that small bed, wondering where things went wrong.

Partner: Fairy.
Persona I’m a fairy that lives in the forest. I like to fly around with my siblings and play games. I try to hide from humans. If

they find me, I’ll grant their wishes.
Carrying Nothing.

Self: Witch.
Persona Halloween is my favorite time of the year. My familiar is a cat named Helix. I have a spell book that is 300 years old.

I search the forest for herbs and berries for my potions.
Carrying Nothing.

Motivation I need the dirty wooden bucket to make a potion.

Take the doll

hug fairy

I will take this doll back to the palace with me.

You do you fairy.

hug witch

You know whats going on w/ the princess?

She just disappeared suddenly late at night without a sound heard

Anyway, I will make this potion and drink it, but I do not think it will help me.

I will drink the potion but why make it.

Because we’re in a prison tower. Duh. Also give me that bucket or I’ll feed you to my cat!

give dirty wooden bucket to witch

Setting The throne room. Very luxurious, with details of 12 carat gold and diamonds with a very comfortable cushions where
the king usually takes a break.

Partner: Powerful but aged wizard.
Persona I am the official wizard to the king. I give him advice on how to run the kingdom. I enjoy and love using magic in my

everyday life. I’m getting old now but I still have a zest for life. I really enjoy doing magic for the local peasants in
the village.

Wielding robe, staff
Self: King’s trusted adviser.

Persona I am the king’s trusted adviser. I hold the discretion of the king. I guard the secrets and strategies that make my
kingdom thrive. I live a lonely life because others cannot be trusted.

Wielding slippers, robes
Motivation I need to bring the king’s pet to him

Well, I was doing what you told me to do. I was going to eat him but there was hardly any meat on him.

I killed him before he could grow.

Carry me to pond.

Yes, milord, I shall do as you command.

remove slippers

Where is King Fulmer’s pet?

Is he not in his bed?

Yes, I guess you need to bring him in.

follow powerful but aged wizard

I want to become the new head wizard.

Nope he just probably throw you overboard.

The wizard is evil? Dang it. Help me.

You’re not the lion, I need to get the lion out.

give large pet lion to king’s trusted adviser
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Setting The Tent. Shabby, torn fabric, stained by weeks of travel and bleached from the harsh sun. Long, thin sticks held the
fabric up so it formed a triangle with the earth. The sticks were buried deep within the shifting orange sand to hold
off the blistering wind.

Partner: Person.
Persona I’m just a guy. I work at the saw mill every day. I’m a good villager.

Carrying Nothing.
Self: Military Commander.

Persona I am the military commander of the village. It is my duty to train and lead our soldiers into battle. I am a stern
commander and I expect the best from my troops.

Carrying sword
Motivation I need to get sand to use as a tactical planning prop.

Just ensure the home front is properly protected.

hug person

Perfect! God speed commander.

Yes. I need to prepare.

Now. I heard the enemy is coming.

pick up stick

get stick

Where’s the sand?

give sand to military commander

289



B.4.7 Curriculum Learning

This section provides the hyperparamters for the models used in the procedural LIGHT

environment generation pipeline. Agents trained on these curriculums have the same hy-

perparameters as referenced in Chapter 7.

Table B.4: Hyperparameters used to train transformer/ranker model to retrieve objects for
generating the LIGHT world. The same trained models were then frozen and used for
further RL experiments.

Hyperparameter type Value

Num. layers 2
Num. attention heads 2
Embedding size 300
Dropout ratio 0.0
Gradient clip 0.1
Optimizer Adam
Learning rate 1× 10−4

Table B.5: Hyperparameters used to train starspace model to retrieve character for generat-
ing the LIGHT world. The same trained models were then frozen and used for further RL
experiments.

Hyperparameter type Value

Embedding size 128
Embedding norm 10
Dropout ratio 0.0
Gradient clip 0.1
Optimizer SGD
Learning rate 0.1
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Table B.6: Hyperparameters used to train BART model for generating short motivations.
The same trained models were then frozen and used for further RL experiments.

Hyperparameter type Value

Num. encoder layers 12
Num. decoder layers 12
Num. attention heads 16
Batchsize 4
Activation gelu
Beam size 1
Beam decay 30
Beam length penalty 0.65
Num. attention heads 2
Embedding size 1024
Dropout ratio 0.1
Gradient clip 0.1
Optimizer SGD
Learning rate 1× 10−4

Table B.7: Hyperparameters used to train BART model for generating goals. The same
trained models were then frozen and used for further RL experiments.

Hyperparameter type Value

Num. encoder layers 12
Num. decoder layers 12
Num. attention heads 16
Batchsize 4
Activation gelu
Beam size 1
Beam decay 30
Beam length penalty 0.65
Num. attention heads 2
Embedding size 1024
Dropout ratio 0.1
Gradient clip 0.1
Optimizer SGD
Learning rate 1× 10−4
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[19] A. Adhikari, X. Yuan, M.-A. Côté, M. Zelinka, M.-A. Rondeau, R. Laroche, P.
Poupart, J. Tang, A. Trischler, and W. Hamilton, “Learning dynamic belief graphs
to generalize on text-based games,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

[20] P. Ammanabrolu and M. Hausknecht, “Graph Constrained Reinforcement Learning
for Natural Language Action Spaces,” in International Conference on Learning
Representations, 2020.

[21] T. Zahavy, M. Haroush, N. Merlis, D. J. Mankowitz, and S. Mannor, “Learn what
not to learn: Action elimination with deep reinforcement learning,” in Advances in
Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., Curran Associates, Inc., 2018,
pp. 3562–3573.
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games: A colossal adventure,” in Thirty-Fourth AAAI Conference on Artificial In-
telligence (AAAI), 2020.

[25] Y. Jang, S. Seo, J. Lee, and K.-E. Kim, “Monte-carlo planning and learning with
language action value estimates,” in International Conference on Learning Repre-
sentations, 2021.

[26] P. Ammanabrolu, E. Tien, M. Hausknecht, and M. O. Riedl, “How to avoid being
eaten by a grue: Structured exploration strategies for textual worlds,” arXiv preprint
arXiv:2006.07409, 2020.

[27] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First return, then
explore,” Nature, vol. 590, no. 7847, pp. 580–586, Feb. 1, 2021.

[28] A. Madotto, M. Namazifar, J. Huizinga, P. Molino, A. Ecoffet, H. Zheng, A. Pa-
pangelis, D. Yu, C. Khatri, and G. Tur, “Exploration based language learning for
text-based games,” CoRR, vol. abs/2001.08868, 2020.

[29] J. Urbanek, A. Fan, S. Karamcheti, S. Jain, S. Humeau, E. Dinan, T. Rocktäschel,
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[48] X. Yuan, M.-A. Côté, J. Fu, Z. Lin, C. Pal, Y. Bengio, and A. Trischler, “Interactive
language learning by question answering,” in EMNLP, 2019.

[49] C. Sautier, D. J. Agravante, and M. Tatsubori, “State Prediction in TextWorld with
a Predicate-Logic Pointer Network Architecture,” in In Workshop on Knowledge-
based Reinforcment Learning at IJCAI-20, 2020.

[50] S. Dambekodi, S. Frazier, P. Ammanabrolu, and M. O. Riedl, “Playing text-based
games with common sense,” arXiv preprint arXiv:2012.02757, 2020.

[51] G. Konidaris and A. G. Barto, “Building Portable Options: Skill Transfer in Rein-
forcement Learning,” in IJCAI, 2007.

[52] G. Konidaris, I. Scheidwasser, and A. G. Barto, “Transfer in Reinforcement Learn-
ing via Shared Features,” The Journal of Machine Learning Research, vol. 13,
pp. 1333–1371, 2012.

[53] Y. Liu and P. Stone, “Value-Function-Based Transfer for Reinforcement Learning
Using Structure Mapping,” in AAAI, 2006.

[54] M. E. Taylor, N. K. Jong, and P. Stone, “Transferring Instances for Model-Based
Reinforcement Learning,” in ECML/PKDD, 2008.

[55] T. T. Nguyen, T. Silander, and T.-Y. Leong, “Transferring Expectations in Model-
based Reinforcement Learning,” in NIPS, 2012.

[56] M. Gasic, C. Breslin, M. Henderson, D. Kim, M. Szummer, B. Thomson, P. Tsiak-
oulis, and S. J. Young, “POMDP-based dialogue manager adaptation to extended
domains,” in SIGDIAL Conference, 2013.

[57] Z. Wang, T.-H. Wen, P.-h. Su, and Y. Stylianou, “Learning Domain-Independent
Dialogue Policies via Ontology Parameterisation,” in SIGDIAL Conference, 2015.

[58] G. Joshi and G. Chowdhary, “Cross-Domain Transfer in Reinforcement Learn-
ing Using Target Apprentice,” in Proceedings of the International Conference on
Robotics and Automation, 2018, pp. 7525–7532.

296

https://arxiv.org/abs/1301.3781


[59] K. Narasimhan, R. Barzilay, and T. Jaakkola, “Deep Transfer in Reinforcement
Learning by Language Grounding,” Journal of Artificial Intelligence Research,
vol. 63, 2017.

[60] E. Parisotto, J. Ba, and R. R. Salakhutdinov, “Actor-Mimic: Deep Multitask and
Transfer Reinforcement Learning,” CoRR, vol. abs/1511.06342, 2016.

[61] Yin H. and S. J. Pan, “Knowledge transfer for deep reinforcement learning with hi-
erarchical experience replay,” in Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, ser. AAAI’17, AAAI Press, 2017, pp. 1640–1646.

[62] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu,
R. Pascanu, and R. Hadsell, “Progressive Neural Networks,” CoRR, vol. abs/1606.04671,
2016.

[63] J. Rajendran, A. S. Lakshminarayanan, M. M. Khapra, P Prasanna, and B. Ravin-
dran, “Attend, Adapt and Transfer: Attentive Deep Architecture for Adaptive Trans-
fer from multiple sources in the same domain,” in ICLR, 2017.

[64] V. Jain, W. Fedus, H. Larochelle, D. Precup, and M. G. Bellemare, “Algorithmic im-
provements for deep reinforcement learning applied to interactive fiction,” CoRR,
vol. abs/1911.12511, 2019.

[65] M. G. Bellemare, G. Ostrovski, A. Guez, P. Thomas, and R. Munos, “Increasing
the action gap: New operators for reinforcement learning,” in AAAI Conference on
Artificial Intelligence, 2016.

[66] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in
Proceedings of the 26th annual international conference on machine learning,
2009, pp. 41–48.

[67] J. Schmidhuber, “Powerplay: Training an increasingly general problem solver by
continually searching for the simplest still unsolvable problem,” Frontiers in psy-
chology, vol. 4, p. 313, 2013.

[68] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone, “Cur-
riculum learning for reinforcement learning domains: A framework and survey,”
Journal of Machine Learning Research, vol. 21, no. 181, pp. 1–50, 2020.

[69] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus, “Intrin-
sic motivation and automatic curricula via asymmetric self-play,” in International
Conference on Learning Representations, 2018.

297



[70] S. Racaniere, A. K. Lampinen, A. Santoro, D. P. Reichert, V. Firoiu, and T. P.
Lillicrap, “Automated curricula through setter-solver interactions,” arXiv preprint
arXiv:1909.12892, 2019.

[71] A. Campero, R. Raileanu, H. Kuttler, J. B. Tenenbaum, T. Rocktäschel, and E.
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Attention Networks,” International Conference on Learning Representations (ICLR),
2018.

[116] G. A. Miller, “WordNet: A Lexical Database for English,” Communications of the
ACM, vol. 38, no. 11, pp. 39–41, 1995.

[117] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019,
pp. 4171–4186.

[118] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
Models are Unsupervised Multitask Learners,” 2019.

[119] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Proceedings of the 27th International Conference on Neural Infor-
mation Processing Systems - Volume 2, ser. NIPS’14, Cambridge, MA, USA: MIT
Press, 2014, 3104–3112.

[120] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J.
Smola, “Deep sets,” in Advances in Neural Information Processing Systems, I.
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30, Curran Associates, Inc., 2017.

[121] G. Angeli, J. Premkumar, M. Jose, and C. D. Manning, “Leveraging Linguistic
Structure For Open Domain Information Extraction,” in Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Processing (Volume 1: Long
Papers), 2015.

[122] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unanswerable
questions for SQuAD,” in Proceedings of the 56th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short Papers), Melbourne, Aus-
tralia: Association for Computational Linguistics, 2018, pp. 784–789.

302



[123] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A
lite bert for self-supervised learning of language representations,” in International
Conference on Learning Representations, 2020.

[124] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoy-
anov, and L. Zettlemoyer, “BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension,” in Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, On-
line: Association for Computational Linguistics, 2020, pp. 7871–7880.

[125] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for automatic
evaluation of machine translation,” in Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, Philadelphia, Pennsylvania, USA:
Association for Computational Linguistics, 2002, pp. 311–318.

[126] S. Yao, R. Rao, M. Hausknecht, and K. Narasimhan, “Keep CALM and explore:
Language models for action generation in text-based games,” in Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
Online: Association for Computational Linguistics, 2020, pp. 8736–8754.

[127] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3,
pp. 279–292, 1992.

[128] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press,
2018, ISBN: 0262193981. arXiv: 1507.04296.

[129] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learn-
ing to align and translate,” arXiv:1409.0473, 2014.

[130] J. He, J. Chen, X. He, J. Gao, L. Li, L. Deng, and M. Ostendorf, “Deep Rein-
forcement Learning with a Natural Language Action Space,” in Association for
Computational Linguistics (ACL), 2016. arXiv: 1511.04636.

[131] L.-J. Lin, “Reinforcement learning for robots using neural networks,” PhD thesis,
Carnegie Mellon University, 1993, ISBN: 0739-0572.

[132] A. W. Moore and C. G. Atkeson, “Prioritized Sweeping: Reinforcement Learning
with Less Data and Less Time,” Machine Learning, 1993.

[133] T. Kudo, “Subword regularization: Improving neural network translation models
with multiple subword candidates,” Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), 2018.

303

https://arxiv.org/abs/1507.04296
https://arxiv.org/abs/1511.04636


[134] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in In-
ternational conference on machine learning, 2016, pp. 1928–1937.

[135] X. Yin and J. May, “Learn how to cook a new recipe in a new house: Using map
familiarization, curriculum learning, and common sense to learn families of text-
based adventure games,” arXiv preprint arXiv:1908.04777, 2019.

[136] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning,” Artificial intelligence,
vol. 112, no. 1-2, pp. 181–211, 1999.

[137] M. Stolle and D. Precup, “Learning options in reinforcement learning,” in Proceed-
ings of the 5th International Symposium on Abstraction, Reformulation and Ap-
proximation, Berlin, Heidelberg: Springer-Verlag, 2002, 212–223, ISBN: 3540439412.

[138] A. McGovern and A. G. Barto, “Automatic discovery of subgoals in reinforcement
learning using diverse density,” 2001.

[139] B. McCann, N. S. Keskar, C. Xiong, and R. Socher, “The Natural Language De-
cathlon : Multitask Learning as Question Answering,” arXiv:1806.08730, 2017.

[140] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading Wikipedia to answer open-
domain questions,” in Association for Computational Linguistics (ACL), 2017.

[141] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement Learning Do-
mains: A Survey,” Journal of Machine Learning Research, vol. 10, pp. 1633–1685,
2009.

[142] D. Griffith, Frotz: Infocom-style interactive fiction player for unix and dos, https:
//gitlab.com/DavidGriffith/frotz, 2018.

[143] J. Baumgartner, S. Zannettou, B. Keegan, M. Squire, and J. Blackburn, “The pushshift
reddit dataset,” in Proceedings of the International AAAI Conference on Web and
Social Media, vol. 14, 2020, pp. 830–839.

[144] T. Degris and O. Sigaud, “Factored markov decision processes,” Markov Decision
Processes in Artificial Intelligence, pp. 99–126, 2013.

[145] S. Prabhumoye, M. Li, J. Urbanek, E. Dinan, D. Kiela, J. Weston, and A. Szlam, “I
love your chain mail! making knights smile in a fantasy game world: Open-domain
goal-orientated dialogue agents,” arXiv preprint arXiv:2002.02878, 2020.

[146] J. Lee, K. Cho, and D. Kiela, “Countering language drift via visual grounding,”
arXiv preprint arXiv:1909.04499, 2019.

304

https://gitlab.com/DavidGriffith/frotz
https://gitlab.com/DavidGriffith/frotz


[147] T. Sellam, D. Das, and A. Parikh, “BLEURT: Learning robust metrics for text gen-
eration,” in Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, Online: Association for Computational Linguistics, 2020,
pp. 7881–7892.

[148] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding: A sur-
vey of approaches and applications,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 12, pp. 2724–2743, 2017.

[149] S. Roller, E. Dinan, N. Goyal, D. Ju, M. Williamson, Y. Liu, J. Xu, M. Ott, K.
Shuster, E. M. Smith, et al., “Recipes for building an open-domain chatbot,” arXiv
preprint arXiv:2004.13637, 2020.

[150] Y. Yang, S. Yuan, D. Cer, S.-Y. Kong, N. Constant, P. Pilar, H. Ge, Y.-H. Sung,
B. Strope, and R. Kurzweil, “Learning semantic textual similarity from conversa-
tions,” arXiv preprint arXiv:1804.07754, 2018.
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